吉林省长白县联考2023年九年级数学第一学期期末调研试题含解析_第1页
吉林省长白县联考2023年九年级数学第一学期期末调研试题含解析_第2页
吉林省长白县联考2023年九年级数学第一学期期末调研试题含解析_第3页
吉林省长白县联考2023年九年级数学第一学期期末调研试题含解析_第4页
吉林省长白县联考2023年九年级数学第一学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长白县联考2023年九年级数学第一学期期末调研试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.用配方法解方程,下列配方正确的是()A. B. C. D.2.若将半径为12cm的半圆形纸片围成一个圆锥的侧面,则这个圆锥的底面圆半径是()A.2cm B.3cm C.4cm D.6cm3.下列图形中,是相似形的是()A.所有平行四边形 B.所有矩形 C.所有菱形 D.所有正方形4.如图是拦水坝的横断面,,斜面坡度为,则斜坡的长为()A.米 B.米 C.米 D.24米5.如图,边长为a,b的长方形的周长为14,面积为10,则a3b+ab3的值为()A.35 B.70 C.140 D.2906.下列说法正确的是()A.随机抛掷一枚均匀的硬币,落地后反面一定朝上。B.从1,2,3,4,5中随机取一个数,取得奇数的可能性较大。C.某彩票中奖率为,说明买100张彩票,有36张中奖。D.打开电视,中央一套正在播放新闻联播。7.如图,已知,直线与直线相交于点,下列结论错误的是()A. B.C. D.8.如图,抛物线=与轴交于点,其对称轴为直线,结合图象分析下列结论:①;②;③>0;④当时,随的增大而增大;⑤≤(m为实数),其中正确的结论有()A.2个 B.3个 C.4个 D.5个9.下列各选项的事件中,发生的可能性大小相等的是()A.小明去某路口,碰到红灯,黄灯和绿灯B.掷一枚图钉,落地后钉尖“朝上”和“朝下”C.小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上D.小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”10.下列四个函数中,y的值随着x值的增大而减小的是()A.y=2x B.y=x+1 C.y=(x>0) D.y=x2(x>0)二、填空题(每小题3分,共24分)11.如果方程x2+4x+n=0可以配方成(x+m)2=3,那么(n﹣m)2020=_____.12.从一副没有“大小王”的扑克牌中随机抽取一张,点数为“”的概率是________.13.写出一个经过点(0,3)的二次函数:________.14.已知,则___________.15.将抛物线向下平移个单位,那么所得抛物线的函数关系是________.16.如果抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),那么m的值为_____.17.如图,已知⊙O的半径为2,四边形ABCD是⊙O的内接四边形,∠ABC=∠AOC,且AD=CD,则图中阴影部分的面积等于______.18.如图,PA,PB是⊙O的两条切线,切点分别为A,B,连接OA,OP,AB,设OP与AB相交于点C,若∠APB=60°,OC=2cm,则PC=_________cm.三、解答题(共66分)19.(10分)如图,已知△ABC为和点A'.(1)以点A'为顶点求作△A'B'C',使△A'B'C'∽△ABC,S△A'B'C'=4S△ABC;(尺规作图,保留作图痕迹,不写作法)(2)设D、E、F分别是△ABC三边AB、BC、AC的中点,D'、E'、F'分别是你所作的△A'B'C'三边A'B'、B'C'、A'C'的中点,求证:△DEF∽△D'E'F'.20.(6分)如图,在中,,是边上的中线,平分交于点、交于点,,.(1)求的长;(2)证明:;(3)求的值.21.(6分)李师傅驾驶出租车匀速地从西安市送客到咸阳国际机场,全程约,设小汽车的行驶时间为(单位:),行驶速度为(单位:),且全程速度限定为不超过.(1)求关于的函数表达式;(2)李师傅上午点驾驶小汽车从西安市出发.需在分钟后将乘客送达咸阳国际机场,求小汽车行驶速度.22.(8分)尺规作图:如图,已知正方形ABCD,E在BC边上,求作AE上一点P,使△ABE∽△DPA(不写过程,保留作图痕迹).23.(8分)如图,抛物线y=x2+x﹣与x轴相交于A,B两点,顶点为P.(1)求点A,点B的坐标;(2)在抛物线上是否存在点E,使△ABP的面积等于△ABE的面积?若存在,求出符合条件的点E的坐标;若不存在,请说明理由.24.(8分)如图,双曲线(>0)与直线交于点A(2,4)和B(a,2),连接OA和OB.(1)求双曲线和直线关系式;(2)观察图像直接写出:当>时,的取值范围;(3)求△AOB的面积.25.(10分)计算:|﹣1|+2sin30°﹣(π﹣3.14)0+()﹣126.(10分)已知关于x的一元二次方程x2+2x+m=1.(1)当m=3时,判断方程的根的情况;(2)当m=﹣3时,求方程的根.

参考答案一、选择题(每小题3分,共30分)1、A【分析】通过配方法可将方程化为的形式.【详解】解:配方,得:,由此可得:,故选A.【点睛】本题重点考查解一元二次方程中的配方法,熟练掌握配方法的过程是解题的关键;注意当方程中二次项系数不为1时,要先将系数化为1后再进行移项和配方.2、D【解析】解:圆锥的侧面展开图的弧长为2π×12÷2=12π(cm),∴圆锥的底面半径为12π÷2π=6(cm),故选D.3、D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【点睛】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.4、B【解析】根据斜面坡度为1:2,堤高BC为6米,可得AC=12m,然后利用勾股定理求出AB的长度.【详解】解:∵斜面坡度为1:2,BC=6m,∴AC=12m,则,故选B.【点睛】本题考查了解直角三角形的应用,解答本题的关键是根据坡角构造直角三角形,利用三角函数的知识求解.5、D【分析】由题意得,将所求式子化简后,代入即可得.【详解】由题意得:,即又代入可得:原式故选:D.【点睛】本题考查了长方形的周长和面积公式、多项式的因式分解、以及完全平方公式,熟练掌握相关内容是解题的关键.6、B【解析】A、掷一枚硬币的试验中,着地时反面向上的概率为,则正面向上的概率也为,不一定就反面朝上,故此选项错误;B、从1,2,3,4,5中随机取一个数,因为奇数多,所以取得奇数的可能性较大,故此选项正确;C、某彩票中奖率为36%,说明买100张彩票,有36张中奖,不一定,概率是针对数据非常多时,趋近的一个数并不能说买100张该种彩票就一定能中36张奖,故此选项错误;D、中央一套电视节目有很多,打开电视有可能正在播放中央新闻也有可能播放其它节目,故本选项错误.故选B.7、B【分析】根据平行线分线段成比例的性质逐一分析即可得出结果.【详解】解:A、由AB∥CD∥EF,则,所以A选项的结论正确;B、由AB∥CD,则,所以B选项的结论错误;C、由CD∥EF,则,所以C选项的结论正确;D、由AB∥EF,则,所以D选项的结论正确.故选:B.【点睛】本题考查了平行线分线段成比例定理:三条平行线截两条直线,所得的对应线段成比例.平行于三角形的一边,并且和其他两边(或两边的延长线)相交的直线,所截得的三角形的三边与原三角形的三边对应成比例.8、B【分析】根据题意和函数图象中的数据,利用二次函数的性质可以判断各个小题中的结论是否正确,从而可以解答本题.【详解】∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(-3,0),其对称轴为直线,∴抛物线y=ax2+bx+c(a≠0)与x轴交于点(-3,0)和(2,0),且=,∴a=b,由图象知:a<0,c>0,b<0,∴abc>0,故结论①正确;∵抛物线y=ax2+bx+c(a≠0)与x轴交于点(-3,0),∴9a-3b+c=0,∵a=b,∴c=-6a,∴3a+c=-3a>0,故结论②正确;∵当时,y=>0,∴<0,故结论③错误;当x<时,y随x的增大而增大,当<x<0时,y随x的增大而减小,故结论④错误;∵a=b,∴≤可换成≤,∵a<0,∴可得≥-1,即4m2+4m+1≥0(2m+1)2≥0,故结论⑤正确;综上:正确的结论有①②⑤,故选:B.【点睛】本题考查了二次函数图象与系数的关系,二次函数的性质,掌握知识点是解题关键.9、D【分析】根据概率公式逐一判断即可.【详解】A、∵交通信号灯有“红、绿、黄”三种颜色,但是红黄绿灯发生的时间一般不相同,∴它们发生的概率不相同,∴选项A不正确;B、∵图钉上下不一样,∴钉尖朝上的概率和钉尖着地的概率不相同,∴选项B不正确;C、∵“直角三角形”三边的长度不相同,∴小亮在沿着Rt△ABC三边行走他出现在AB,AC与BC边上走,他出现在各边上的概率不相同,∴选项C不正确;D、小红掷一枚均匀的骰子,朝上的点数为“偶数”和“奇数”的可能性大小相等,∴选项D正确.故选:D.【点睛】此题考查的是概率问题,掌握根据概率公式分析概率的大小是解决此题的关键.10、C【分析】根据一次函数、反比例函数、二次函数的增减性,结合自变量的取值范围,逐一判断.【详解】解:A、y=2x,正比例函数,k>0,故y随着x增大而增大,错误;B、y=x+1,一次函数,k>0,故y随着x增大而增大,错误;C、y=(x>0),反比例函数,k>0,故在第一象限内y随x的增大而减小,正确;D、y=x2,当x>0时,图象在对称轴右侧,y随着x的增大而增大,错误.故选C.【点睛】本题考查二次函数的性质;一次函数的性质;反比例函数的性质.二、填空题(每小题3分,共24分)11、1【分析】已知配方方程转化成一般方程后求出m、n的值,即可得到结果.【详解】解:由(x+m)2=3,得:

x2+2mx+m2-3=0,

∴2m=4,m2-3=n,

∴m=2,n=1,

∴(n﹣m)2020=(1﹣2)2020=1,

故答案为:1.【点睛】此题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解本题的关键.12、【分析】让点数为6的扑克牌的张数除以没有大小王的扑克牌总张数即为所求的概率.【详解】∵没有大小王的扑克牌共52张,其中点数为6的扑克牌4张,

∴随机抽取一张点数为6的扑克,其概率是

故答案为【点睛】本题考查的是随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.13、(答案不唯一)【分析】设二次函数的表达式为y=x2+x+c,将(0,3)代入得出c=3,即可得出二次函数表达式.【详解】解:设二次函数的表达式为y=ax2+bx+c(a≠0),

∵图象为开口向上,且经过(0,3),

∴a>0,c=3,

∴二次函数表达式可以为:y=x2+3(答案不唯一).

故答案为:y=x2+3(答案不唯一).【点睛】本题主要考查了用待定系数法求二次函数解析式,得出c=3是解题关键,属开放性题目,答案不唯一.14、【分析】根据比例式设a=2k,b=5k,代入求值即可解题.【详解】解:∵,设a=2k,b=5k,∴【点睛】本题考查了比例的性质,属于简单题,设k法是解题关键.15、【分析】先确定抛物线y=2x2的顶点坐标为(0,0),再利用点平移的坐标规律写出平移后顶点坐标,然后利用顶点式写出平移后的抛物线解析式.【详解】解:的顶点坐标为,把点向下平移个单位得到的对应点的坐标为,所以平移后的抛物线的解析式是.故答案为:.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.16、2【分析】把点(2,1)代入y=﹣x2+(m﹣1)x+3,即可求出m的值.【详解】∵抛物线y=﹣x2+(m﹣1)x+3经过点(2,1),∴1=-4+2(m-1)+3,解得m=2,故答案为2.【点睛】本题考查了二次函数图象上点的坐标特征,解题的关键是找出二次函数图象上的点的坐标满足的关系式.17、π﹣【分析】根据题意可以得出三角形ACD是等边三角形,进而求出∠AOD,再根据直角三角形求出OE、AD,从而从扇形的面积减去三角形AOD的面积即可得出阴影部分的面积.【详解】解:连接AC,OD,过点O作OE⊥AD,垂足为E,∵∠ABC=∠AOC,∠AOC=2∠ADC,∠ABC+∠ADC=180°,∴∠ABC=120°,∠ADC=60°,∵AD=CD,∴△ACD是正三角形,∴∠AOD=120°,OE=2×cos60°=1,AD=2×sin60°×2=2,∴S阴影部分=S扇形OAD﹣S△AOD=×π×22﹣×2×1=π﹣,故答案为:π﹣.【点睛】本题主要考察扇形的面积和三角形的面积,熟练掌握面积公式及计算法则是解题关键.18、6【分析】由切线长定理可知PA=PB,由垂径定理可知OP垂直平分AB,所以OP平分,可得,利用直角三角形30度角的性质可得OA、OP的长,即可.【详解】解:PA,PB是⊙O的两条切线,由垂径定理可知OP垂直平分AB,OP平分,在中,在中,故答案为:6【点睛】本题主要考查了圆的性质与三角形的性质,涉及的知识点主要有切线长定理、垂径定理、等腰三角形的性质、直角三角形30度角的性质,灵活的将圆与三角形相结合是解题的关键.三、解答题(共66分)19、(1)作图见解析;(2)证明见解析.【分析】(1)分别作A'C'=2AC、A'B'=2AB、B'C'=2BC得△A'B'C'即可.(2)根据中位线定理易得△DEF∽△CAB,△D'E'F'∽△C'A'B',故可得△DEF∽△D'E'F'.【详解】解:(1)作线段A'C'=2AC、A'B'=2AB、B'C'=2BC,得△A'B'C'即为所求.证明:∵A'C'=2AC、A'B'=2AB、B'C'=2BC,∴△ABC∽△A′B′C′,∴;(2)证明:∵D、E、F分别是△ABC三边AB、BC、AC的中点,∴DE=AC,DF=BC,EF=AB,∴△DEF∽△CAB,同理:△D'E'F'∽△C'A'B',由(1)可知:△ABC∽△A′B′C′,∴△DEF∽△D'E'F'.【点睛】本题考查了相似三角形的判定和性质及三角形的中位线定理,解答本题的关键是掌握相似三角形的判定方法.20、(1)13(2)证明见解析(3)【分析】(1)根据等腰三角形三线合一的性质可得,结合,可得,根据勾股定理列式求解即可;(2)根据直角三角形的斜边中线定理和等边对等角即可证明;(3)通过证明F是△ABC的重心,即可得,根据勾股定理求出BE的长度,即可在Rt△BEF中求出的值.【详解】(1)∵,平分交于点、交于点∴∵∴在Rt△ABE中,∴∵∴在Rt△ABE中,∴∵∴;(2)∵是边上的中线∴∴;(3)∵,平分交于点、交于点∴AE是BC边上的中线∵BD是AC边上的中线∴F是△ABC的重心∵∴∴∴在Rt△BEF中,∴.【点睛】本题考查了三角形的综合问题,掌握等腰三角形三线合一的性质、勾股定理、锐角三角函数、三角形重心的性质是解题的关键.21、(1);(2)【分析】(1)根据距离=速度×时间即可得关于的函数表达式,根据全程速度限定为不超过可确定t的取值范围;(2)把t=0.5代入(1)中关系式,即可求出速度v的值.【详解】∵全程约,小汽车的行驶时间为,行驶速度为,∴vt=40,∵全程速度限定为不超过,全程约,∴t≥0.4,∴v关于的函数表达式为:.(2)∵需在分钟后将乘客送达咸阳国际机场,30分钟=0.5小时,∴v==80,∴小汽车行驶速度是.【点睛】此题考查反比例函数的实际运用,掌握路程、时间、速度三者之间的关系是解题关键.22、详见解析【分析】过D点作DP⊥AE交AE于点P,利用相似三角形的判定解答即可.【详解】作图如下:解:∵DP⊥AE交AE于点P,四边形ABCD是正方形

∴∠APD=∠ABE=∠BAD=90°,

∴∠BAE+∠PAD=90°,∠PAD+∠ADP=90°,

∴∠BAE=∠ADP,又∵∠APD=∠ABE

∴△DPA∽△ABE.【点睛】此题考查作图-相似变换,关键是根据相似三角形的判定解答.23、(1)A(﹣3,0),B(1,0);(2)存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).【分析】(1)令y=0可求得相应方程的两根,则可求得A、B的坐标;(2)可先求得P点坐标,则可求得点E到AB的距离,可求得E点纵坐标,再代入抛物线解析式可求得E点坐标.【详解】(1)令y=0,则x2+x0,解得:x=﹣3或x=1,∴A(﹣3,0),B(1,0);(2)存在.理由如下:∵yx2+x(x+1)2﹣2,∴P(﹣1,﹣2).∵△ABP的面积等于△ABE的面积,∴点E到AB的距离等于2,①当点E在x轴下方时,则E与P重合,此时E(﹣1,﹣2);②当点E在x轴上方时,则可设E(a,2),∴a2+a2,解得:a=﹣1﹣2或a=﹣1+2,∴E(﹣1﹣2,2)或E(﹣1+2,2).综上所述:存在符合条件的点E,其坐标为(﹣1﹣2,2)或(﹣1+2,2)或(﹣1,﹣2).【点睛】本题考查了二次函数的性质及与坐标轴的交点,分别求得A、B、P的坐标是解答本题的关键.24、(1),;(2)0<x<2或x>4;(3)

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论