江苏省东台市第二教育联盟2023年数学九上期末调研试题含解析_第1页
江苏省东台市第二教育联盟2023年数学九上期末调研试题含解析_第2页
江苏省东台市第二教育联盟2023年数学九上期末调研试题含解析_第3页
江苏省东台市第二教育联盟2023年数学九上期末调研试题含解析_第4页
江苏省东台市第二教育联盟2023年数学九上期末调研试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省东台市第二教育联盟2023年数学九上期末调研试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每题4分,共48分)1.下列事件中,属于必然事件的是()A.明天我市下雨B.抛一枚硬币,正面朝下C.购买一张福利彩票中奖了D.掷一枚骰子,向上一面的数字一定大于零2.方程x=x(x-1)的根是()A.x=0 B.x=2 C.x1=0,x2=1 D.x1=0,x2=23.下列方程中,没有实数根的是()A. B. C. D.4.为了让人们感受丢弃塑料袋对环境造成的影响,某班环保小组的6名同学记录了自己家中一周内丢弃塑料袋的数量,结果如下:(单位:个)33,25,28,26,25,31,如果该班有45名学生,那么根据提供的数据估计本周全班同学各家总共丢弃塑料袋的数量为()A.900个 B.1080个 C.1260个 D.1800个5.已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论:①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b>m(am+b)(m≠1的实数).其中正确的结论有()A.2个 B.3个 C.4个 D.5个6.已知点A(-2,m),B(2,m),C(3,m﹣n)(n>0)在同一个函数的图象上,这个函数可能是()A.y=x B.y=﹣ C.y=x2 D.y=﹣x27.如图,AB是半圆O的直径,半径OC⊥AB于O,AD平分∠CAB交于点D,连接CD,OD,BD.下列结论中正确的是()A.AC∥OD B.C.△ODE∽△ADO D.8.抛物线y=﹣(x+2)2﹣3的顶点坐标是()A.(2,﹣3) B.(﹣2,3) C.(2,3) D.(﹣2,﹣3)9.如图,在△ABC中,E,G分别是AB,AC上的点,∠AEG=∠C,∠BAC的平分线AD交EG于点F,若,则()A. B. C. D.10.下面四个图案分别是步行标志、禁止行人通行标志、禁止驶入标志和直行标志,其中既是轴对称图形,又是中心对称图形的是()A. B. C. D.11.如图,正六边形的边长是1cm,则线段AB和CD之间的距离为()A.2cm B.cm C.cm D.1cm12.若,则代数式的值()A.-1 B.3 C.-1或3 D.1或-3二、填空题(每题4分,共24分)13.定义:如果一元二次方程ax2+bx+c=1(a≠1)满足a+b+c=1.那么我们称这个方程为“凤凰”方程,已知ax2+bx+c=1(a≠1)是“凤凰”方程,且有两个相等的实数根,则下列结论:①a=c,②a=b,③b=c,④a=b=c,正确的是_____(填序号).14.已知抛物线经过和两点,则的值为__________.15.若关于的一元二次方程有实数根,则的取值范围是_________.16.抛物线y=2(x﹣1)2﹣5的顶点坐标是_____.17.已知,且,且与的周长和为175,则的周长为_________.18.如图,在平面直角坐标系中,为线段上任一点,作交线段于,当的长最大时,点的坐标为_________.三、解答题(共78分)19.(8分)如图,是的弦,为半径的中点,过作交弦于点,交于点,且.(1)求证:是的切线;(2)连接、,求的度数:(3)如果,,,求的半径.20.(8分)在一个不透明的布袋里装有4个标有1,2,3,4的小球,它们的形状、大小、质地完全相同,小李从布袋里随机取出一个小球,记下数字为x,小张在剩下的3个小球中随机取出一个小球,记下数字为y,这样确定了点Q的坐标(x,y).(1)画树状图或列表,写出点Q所有可能的坐标;(2)求点Q(x,y)在函数y=﹣x+5图象上的概率.21.(8分)当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量(本)与销售单价(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求的值.22.(10分)一次函数与反比例函数的图象相交于A(﹣1,4),B(2,n)两点,直线AB交x轴于点D.(1)求一次函数与反比例函数的表达式;(2)过点B作BC⊥y轴,垂足为C,连接AC交x轴于点E,求△AED的面积S.23.(10分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用26m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设BC=xm.(1)若矩形花园ABCD的面积为165m2,求x的值;(2)若在P处有一棵树,树中心P与墙CD,AD的距离分别是13m和6m,要将这棵树围在花园内(考虑到树以后的生长,篱笆围矩形ABCD时,需将以P为圆心,1为半径的圆形区域围在内),求矩形花园ABCD面积S的最大值.24.(10分)如图,在菱形ABCD中,对角线AC与BD相交于点M,已知BC=5,点E在射线BC上,tan∠DCE=,点P从点B出发,以每秒2个单位沿BD方向向终点D匀速运动,过点P作PQ⊥BD交射线BC于点O,以BP、BQ为邻边构造▱PBQF,设点P的运动时间为t(t>0).(1)tan∠DBE=;(2)求点F落在CD上时t的值;(3)求▱PBQF与△BCD重叠部分面积S与t之间的函数关系式;(4)连接▱PBQF的对角线BF,设BF与PQ交于点N,连接MN,当MN与△ABC的边平行(不重合)或垂直时,直接写出t的值.25.(12分)用配方法解方程:x2﹣8x+1=026.在不透明的袋子中有四张标有数字1,2,3,4的卡片,小明、小华两人按照各自的规则玩抽卡片游戏.小明画出树形图如下:小华列出表格如下:第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3)

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列问题:(1)根据小明画出的树形图分析,他的游戏规则是:随机抽出一张卡片后(填“放回”或“不放回”),再随机抽出一张卡片;(2)根据小华的游戏规则,表格中①表示的有序数对为;(3)规定两次抽到的数字之和为奇数的获胜,你认为淮获胜的可能性大?为什么?

参考答案一、选择题(每题4分,共48分)1、D【分析】根据定义进行判断.【详解】解:必然事件就是一定发生的事件,随机事件是可能发生也可能不发生的事件,由必然事件和随机事件的定义可知,选项A,B,C为随机事件,选项D是必然事件,故选D.【点睛】本题考查必然事件和随机事件的定义.2、D【详解】解:先移项,再把方程左边分解得到x(x﹣1﹣1)=0,原方程化为x=0或x﹣1﹣1=0,解得:x1=0;x2=2故选D.【点睛】本题考查因式分解法解一元二次方程,掌握因式分解的技巧进行计算是解题关键.3、D【分析】要判定所给方程根的情况,只要分别求出它们的判别式,然后根据判别式的正负情况即可作出判断.没有实数根的一元二次方程就是判别式的值小于0的方程.【详解】解:A、x2+x=0中,△=b2-4ac=1>0,有实数根;

B、x2-2=0中,△=b2-4ac=8>0,有实数根;

C、x2+x-1=0中,△=b2-4ac=5>0,有实数根;

D、x2-x+1=0中,△=b2-4ac=-3,没有实数根.

故选D.【点睛】本题考查一元二次方程根判别式△:即(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.4、C【分析】先求出6名同学家丢弃塑料袋的平均数量作为全班学生家的平均数量,然后乘以总人数45即可解答.【详解】估计本周全班同学各家总共丢弃塑料袋的数量为(个).【点睛】本题考查了用样本估计总体的问题,掌握算术平均数的公式是解题的关键.5、A【分析】观察图象:开口向下得到a<0;对称轴在y轴的右侧得到a、b异号,则b>0;抛物线与y轴的交点在x轴的上方得到c>0,所以abc<0;当x=﹣1时图象在x轴上得到y=a﹣b+c=0,即a+c=b;对称轴为直线x=1,可得x=2时图象在x轴上方,则y=4a+2b+c>0;利用对称轴x=﹣=1得到a=﹣b,而a﹣b+c<0,则﹣b﹣b+c<0,所以2c<3b;开口向下,当x=1,y有最大值a+b+c,得到a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1).【详解】解:开口向下,a<0;对称轴在y轴的右侧,a、b异号,则b>0;抛物线与y轴的交点在x轴的上方,c>0,则abc<0,所以①不正确;当x=﹣1时图象在x轴上,则y=a﹣b+c=0,即a+c=b,所以②不正确;对称轴为直线x=1,则x=2时图象在x轴上方,则y=4a+2b+c>0,所以③正确;x=﹣=1,则a=﹣b,而a﹣b+c=0,则﹣b﹣b+c=0,2c=3b,所以④不正确;开口向下,当x=1,y有最大值a+b+c;当x=m(m≠1)时,y=am2+bm+c,则a+b+c>am2+bm+c,即a+b>m(am+b)(m≠1),所以⑤正确.故选:A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c(a≠0)的图象,当a>0,开口向上,函数有最小值,a<0,开口向下,函数有最大值;对称轴为直线x=,a与b同号,对称轴在y轴的左侧,a与b异号,对称轴在y轴的右侧;当c>0,抛物线与y轴的交点在x轴的上方;当△=b2-4ac>0,抛物线与x轴有两个交点.6、D【分析】可以采用排除法得出答案,由点A(-2,m),B(2,m)关于y轴对称,于是排除选项A、B;再根据B(2,m),C(3,m﹣n)(n>0)的特点和二次函数的性质,可知抛物线在对称轴的右侧呈下降趋势,所以抛物线的开口向下,即a<0.【详解】解:∵A(-2,m),B(2,m)关于y轴对称,且在同一个函数的图像上,

而,的图象关于原点对称,∴选项A、B错误,只能选C、D,,

∵,在同一个函数的图像上,而y=x2在y轴右侧呈上升趋势,∴选项C错误,而D选项符合题意.故选:D.【点睛】本题考查正比例函数、反比例函数、二次函数的图象和性质,熟悉各个函数的图象和性质是解题的基础,发现点的坐标关系是解题的关键.7、A【分析】A.根据等腰三角形的性质和角平分线的性质,利用等量代换求证∠CAD=∠ADO即可;

B.过点E作EF⊥AC,根据角平分线上的点到角的两边的距离相等可得OE=EF,再根据直角三角形斜边大于直角边可证;

C.两三角形中,只有一个公共角的度数相等,其它两角不相等,所以不能证明③△ODE∽△ADO;

D.根据角平分线的性质得出∠CAD=∠BAD,根据在同圆或等圆中,相等的圆周角所对的弦相等,可得CD=BD,又因为CD+BD>BC,又由AC=BC可得AC<2CD,从而可判断D错误.【详解】解:解:A.∵AB是半圆直径,

∴AO=OD,

∴∠OAD=∠ADO,

∵AD平分∠CAB交弧BC于点D,

∴∠CAD=∠DAO=∠CAB,

∴∠CAD=∠ADO,

∴AC∥OD,

∴A正确.

B.如图,过点E作EF⊥AC,

∵OC⊥AB,AD平分∠CAB交弧BC于点D,

∴OE=EF,

在Rt△EFC中,CE>EF,

∴CE>OE,

∴B错误.

C.∵在△ODE和△ADO中,只有∠ADO=∠EDO,

∵∠COD=2∠CAD=2∠OAD,

∴∠DOE≠∠DAO,

∴不能证明△ODE和△ADO相似,

∴C错误;D.∵AD平分∠CAB交于点D,∴∠CAD=∠BAD.∴CD=BD∴BC<CD+BD=2CD,∵半径OC⊥AB于O,∴AC=BC,∴AC<2CD,∴D错误.故选A.【点睛】本题主要考查相似三角形的判定与性质,圆心角、弧、弦的关系,圆周角定理,等腰三角形的性质,三角形内角和定理等知识点的灵活运用,此题步骤繁琐,但相对而言,难易程度适中,很适合学生的训练.8、D【解析】试题分析:∵抛物线y=﹣(x+2)2﹣3为抛物线解析式的顶点式,∴抛物线顶点坐标是(﹣2,﹣3).故选D.考点:二次函数的性质.9、C【分析】根据两组对应角相等可判断△AEG∽△ACB,△AEF∽△ACD,再得出线段间的比例关系进行计算即可得出结果.【详解】解:(1)∵∠AEG=∠C,∠EAG=∠BAC,

∴△AEG∽△ACB.

∴.

∵∠EAF=∠CAD,∠AEF=∠C,

∴△AEF∽△ACD.

∴又,∴.∴故选C.【点睛】本题考查了相似三角形的判定,解答本题,要找到两组对应角相等,再利用相似的性质求线段的比值.10、C【分析】根据轴对称图形和中心对称图形的定义,即可得出答案.【详解】A.不是轴对称图形,也不是中心对称图形;B.不是轴对称图形,也不是中心对称图形;C.是轴对称图形,也是中心对称图形;D.是轴对称图形,不是中心对称图形.故选:C.【点睛】轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.11、B【分析】连接AC,过E作EF⊥AC于F,根据正六边形的特点求出∠AEC的度数,再由等腰三角形的性质求出∠EAF的度数,由特殊角的三角函数值求出AF的长,进而可求出AC的长.【详解】如图,连接AC,过E作EF⊥AC于F,∵AE=EC,∴△AEC是等腰三角形,∴AF=CF,∵此多边形为正六边形,∴∠AEC==120°,∴∠AEF==60°,∴∠EAF=30°,∴AF=AE×cos30°=1×=,∴AC=,故选:B.【点睛】本题考查了正多边形的应用,等腰三角形的性质和锐角三角函数,掌握知识点是解题关键.12、B【分析】利用换元法解方程即可.【详解】设=x,原方程变为:,解得x=3或-1,∵≥0,∴故选B.【点睛】本题考查了用换元法解一元二次方程,设=x,把原方程转化为是解题的关键.二、填空题(每题4分,共24分)13、①【分析】由方程有两个相等的实数根,得到根的判别式等于1,再由a+b+c=1,把表示出b代入根的判别式中,变形后即可得到a=c.【详解】解:∵方程有两个相等实数根,且a+b+c=1,∴b2﹣4ac=1,b=﹣a﹣c,将b=﹣a﹣c代入得:a2+2ac+c2﹣4ac=(a﹣c)2=1,则a=c.故答案为:①.【点睛】此题考查了根的判别式,以及一元二次方程的解,一元二次方程中根的判别式大于1,方程有两个不相等的实数根;根的判别式等于1,方程有两个相等的实数根;根的判别式小于1,方程无解.14、【分析】根据(-2,n)和(1,n)可以确定函数的对称轴x=1,再由对称轴的x=,即可求出b,于是可求n的值.【详解】解:抛物线经过(-2,n)和(1,n)两点,可知函数的对称轴x=1,

∴=1,

∴b=2;

∴y=-x2+2x+1,

将点(-2,n)代入函数解析式,可得n=-1;

故答案是:-1.【点睛】本题考查二次函数图象上点的坐标;熟练掌握二次函数图象上点的对称性是解题的关键.15、,但【分析】根据一元二次方程根的判别式,即可求出答案.【详解】解:∵一元二次方程有实数根,∴,解得:;∵是一元二次方程,∴,∴的取值范围是,但.故答案为:,但.【点睛】本题考查根的判别式,解题的关键是熟练运用根的判别式,本题属于基础题型.16、(1,﹣5)【分析】根据二次函数的顶点式即可求解.【详解】解:抛物线y=2(x﹣1)2﹣5的顶点坐标是(1,﹣5).故答案为(1,﹣5).【点睛】本题考查了顶点式对应的顶点坐标,顶点式的理解是解题的关键17、1【分析】根据相似三角形的性质得△ABC的周长:△DEF的周长=3:4,然后根据与的周长和为11即可计算出△ABC的周长.【详解】解:∵△ABC与△DEF的面积比为9:16,∴△ABC与△DEF的相似比为3:4,

∴△ABC的周长:△DEF的周长=3:4,∵与的周长和为11,

∴△ABC的周长=×11=1.

故答案是:1.【点睛】本题考查了相似三角形的性质:相似三角形(多边形)的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.18、(3,)【分析】根据勾股定理求出AB,由DE⊥BD,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,利用相似三角形求出x,再根据三角形相似求出点E的横纵坐标即可.【详解】∵A(4,0),B(0,3),∴OA=4,OB=3,∴AB=5,∵DE⊥BD,∴∠BDE=90°,取BE的中点F,以点F为圆心,BF长为半径作半圆,与x轴相切于点D,连接FD,设AE=x,则BF=EF=DF=,∵∠ADF=∠AOB=90°,∴DF∥OB∴△ADF∽△AOB∴∴,解得x=,过点E作EG⊥x轴,∴EG∥OB,∴△AEG∽△ABO,∴,∴,∴EG=,AG=1,∴OG=OA-AG=4-1=3,∴E(3,),故答案为:(3,).【点睛】此题考查圆周角定理,相似三角形的判定及性质,勾股定理,本题借助半圆解题使题中的DE⊥BD所成的角确定为圆周角,更容易理解,是解此题的关键.三、解答题(共78分)19、(1)证明见解析;(2)30°;(3).【分析】(1)连接OB,由圆的半径相等和已知条件证明∠OBC=90°,即可证明BC是⊙O的切线;(2)连接OF,AF,BF,首先证明△OAF是等边三角形,再利用圆周角定理:同弧所对的圆周角是所对圆心角的一半即可求出∠ABF的度数;(3)作CG⊥BE于G,如图,利用等腰三角形的性质得BG=5,再证明∠OAB=∠ECG,则sin∠ECG=sin∠OAB=,于是可计算出CE=13,从而得到DE=2,由,得,,即可求出的半径.【详解】连接.,,,,又.,,,是的切线;(2)连接OF,AF,BF,,,,又,是等边三角形,,.(3)过点作于,,,,∴,在中,,sin∠ECG=sin∠OAB=,,,又,.由,得:,,的半径为.【点睛】此题考查了切线的判定,以及相似三角形的判定与性质,熟练掌握相似三角形的判定与性质是解本题的关键.20、(1)画树状图或列表见解析;(2).【解析】试题分析:根据题意列出表格,找出所有的点Q坐标,根据函数上的点的特征得出符合条件的点,根据概率的计算方法进行计算.试题解析:(1)列表得:(x,y)

1

2

3

4

1

(1,2)

(1,3)

(1,4)

2

(2,1)

(2,3)

(2,4)

3

(3,1)

(3,2)

(3,4)

4

(4,1)

(4,2)

(4,3)

点Q所有可能的坐标有:(1,2),(1,3),(1,4),(2,1),(2,3),(2,4),(3,1),(3,2),(3,4),(4,1),(4,2),(4,3)共12种;(2)∵共有12种等可能的结果,其中在函数y=﹣x+6图象上的有2种,即:(2,4),(4,2),∴点P(x,y)在函数y=﹣x+6图象上的概率为:P=.考点:概率的计算.21、(1);(1).【解析】(1)根据题意列函数关系式即可;

(1)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x-10-a)(-10x+500)=-10x1+(10a+700)x-500a-10000(30≤x≤38)求得对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,解方程得到a1=1,a1=58,于是得到a=1.【详解】解:(1)根据题意得,;(1)设每天扣除捐赠后可获得利润为元.对称轴为x=35+a,且0<a≤6,则30<35+a≤38,则当时,取得最大值,∴∴(不合题意舍去),∴.【点睛】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.22、(1),;(2).【分析】(1)把A(﹣1,4)代入反比例函数可得m的值,再把B(2,n)代入反比例函数的解析式得到n的值;然后利用待定系数法确定一次函数的解析式;(2)由BC⊥y轴,垂足为C以及B点坐标确定C点坐标,可求出直线AC的解析式,进一步求出点E的坐标,然后计算得出△AED的面积S.【详解】解:(1)把A(﹣1,4)代入反比例函数得,m=﹣1×4=﹣4,所以反比例函数的解析式为,把B(2,n)代入得,2n=﹣4,解得n=﹣2,所以B点坐标为(2,﹣2),把A(﹣1,4)和B(2,﹣2)代入一次函数,得:,解得:,所以一次函数的解析式为;(2)∵BC⊥y轴,垂足为C,B(2,﹣2),∴C点坐标为(0,﹣2).设直线AC的解析式为,∵A(﹣1,4),C(0,﹣2),∴,解得:,∴直线AC的解析式为,当y=0时,﹣6x﹣2=0,解答x=,∴E点坐标为(,0),∵直线AB的解析式为,∴直线AB与x轴交点D的坐标为(1,0),∴DE=,∴△AED的面积S==.【点睛】本题考查1.反比例函数与一次函数的交点问题;2.综合题,利用数形结合思想解题是关键.23、(1)x的值为11m或15m;(2)花园面积S的最大值为168平方米.【分析】(1)直接利用矩形面积公式结合一元二次方程的解法即可求得答案;(2)首先得到S与x的关系式,进而利用二次函数的增减性即可求得答案.【详解】(1)∵AB=xm,则BC=(26﹣x)m,∴x(26﹣x)=165,解得:x1=11,x2=15,答:x的值为11m或15m;(2)由题意可得出:S=x(26﹣x)=﹣x2+26x=﹣(x﹣13)2+169,由题意得:14≤x≤19,∵-1<0,14≤x≤19,∴S随着x的增大而减小,∴x=14时,S取到最大值为:S=﹣(14﹣13)2+169=168,答:花园面积S的最大值为168平方米.【点睛】本题考查了二次函数的应用以及一元二次方程的解法,正确结合二次函数的增减性求得最值是解题的关键.24、(1);(1)t=;(3)见解析;(4)t的值为或或或1.【分析】(1)如图1中,作DH⊥BE于H.解直角三角形求出BH,DH即可解决问题.(1)如图1中,由PF∥CB,可得,由此构建方程即可解决问题.(3)分三种情形:如图3-1中,当时,重叠部分是平行四边形PBQF.如图3-1中,当时,重叠部分是五边形PBQRT.如图3-3中,当1<t≤1时,重叠部分是四边形PBCT,分别求解即可解决问题.

(4)分四种情形:如图4-1中,当MN∥AB时,设CM交BF于T.如图4-1中,当MN⊥BC时.如图4-3中,当MN⊥AB时.当点P与点D重合时,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论