版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南京江北新区七校联考2023-2024学年数学九上期末达标测试试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.抛物线经过平移得到抛物线,平移过程正确的是()A.先向下平移个单位,再向左平移个单位B.先向上平移个单位,再向右平移个单位C.先向下平移个单位,再向右平移个单位D.先向上平移个单位,再向左平移个单位.2.正方形ABCD内接于⊙O,若⊙O的半径是,则正方形的边长是()A.1 B.2 C. D.23.方程x2=2x的解是()A.2 B.0 C.2或0 D.﹣2或04.如图,在正方形ABCD中,AB=5,点M在CD的边上,且DM=2,△AEM与△ADM关于AM所在的直线对称,将△ADM按顺时针方向绕点A旋转90°得到△ABF,连接EF,则线段EF的长为()A. B. C. D.5.如图,以(1,-4)为顶点的二次函数y=ax2+bx+c的图象与x轴负半轴交于A点,则一元二次方程ax2+bx+c=0的正数解的范围是()A.2<x<3 B.3<x<4 C.4<x<5 D.5<x<66.方程x2=4的解是()A.x1=x2=2 B.x1=x2=-2 C.x1=2,x2=-2 D.x1=4,x2=-47.在Rt△ABC中,,如果∠A=,,那么线段AC的长可表示为().A.; B.; C.; D..8.如图,P(x,y)是反比例函数的图象在第一象限分支上的一个动点,PA⊥x轴于点A,PB⊥y轴于点B,随着自变量x的逐渐增大,矩形OAPB的面积()A.保持不变 B.逐渐增大 C.逐渐减小 D.无法确定9.如图,点A是反比例函数y=(x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作▱ABCD,其中C、D在x轴上,则S□ABCD为()A.2 B.3 C.4 D.510.为了考察某种小麦的长势,从中抽取了5株麦苗,测得苗高(单位:cm)为:10、16、8、17、19,则这组数据的极差是()A.8 B.9 C.10 D.11二、填空题(每小题3分,共24分)11.如图,在平面直角坐标系中,正方形ABCD的面积为20,顶点A在y轴上,顶点C在x轴上,顶点D在双曲线的图象上,边CD交y轴于点E,若,则k的值为______.12.如图,直线y=x+2与反比例函数y=的图象在第一象限交于点P.若OP=,则k的值为________.13.如图,根据图示,求得和的值分别为____________.14.在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是____________.15.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第_________个图形有94个小圆.16.如图,在中,,,若为斜边上的中线,则的度数为________.17.在平面直角坐标系中,点(﹣3,2)关于原点对称的点的坐标是_____.18.已知抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(﹣3,0),(2,0),则方程ax2+bx+c=0(a≠0)的解是_____.三、解答题(共66分)19.(10分)举世瞩目的港珠澳大桥已于2018年10月24日正式通车,这座大桥是世界上最长的跨海大桥,被英国《卫报》誉为“新世界七大奇迹”,车辆经过这座大桥收费站时,从已开放的4个收费通道A、B、C、D中可随机选择其中一个通过.(1)一辆车经过收费站时,选择A通道通过的概率是.(2)用树状图或列表法求两辆车经过此收费站时,选择不同通道通过的概率.20.(6分)如图,已知AB是⊙O上的点,C是⊙O上的点,点D在AB的延长线上,∠BCD=∠BAC.(1)求证:CD是⊙O的切线;(2)若∠D=30°,BD=2,求图中阴影部分的面积.21.(6分)定义:如果一个四边形的一组对角互余,那么我们称这个四边形为“对角互余四边形”.(1)如图①,在对角互余四边形ABCD中,∠B=60°,且AC⊥BC,AC⊥AD,若BC=1,则四边形ABCD的面积为;(2)如图②,在对角互余四边形ABCD中,AB=BC,BD=13,∠ABC+∠ADC=90°,AD=8,CD=6,求四边形ABCD的面积;(3)如图③,在△ABC中,BC=2AB,∠ABC=60°,以AC为边在△ABC异侧作△ACD,且∠ADC=30°,若BD=10,CD=6,求△ACD的面积.22.(8分)已知,如图,AB是⊙O的直径,AD平分∠BAC交⊙O于点D,过点D的切线交AC的延长线于E.求证:DE⊥AE.23.(8分)如图1,点A(0,8)、点B(2,a)在直线y=﹣2x+b上,反比例函数y=(x>0)的图象经过点B.(1)求a和k的值;(2)将线段AB向右平移m个单位长度(m>0),得到对应线段CD,连接AC、BD.①如图2,当m=3时,过D作DF⊥x轴于点F,交反比例函数图象于点E,求E点的坐标;②在线段AB运动过程中,连接BC,若△BCD是等腰三形,求所有满足条件的m的值.24.(8分)正比例函数y=2x与反比例函数y=的图象有一个交点的纵坐标为1.(1)求m的值;(2)请结合图象求关于x的不等式2x≤的解集.25.(10分)解方程或计算(1)解方程:3y(y-1)=2(y-1)(2)计算:sin60°cos45°+tan30°.26.(10分)如图,已知一次函数的图象与反比例函数的图象交于点,与轴交于点,连接,点为轴上一点,,连接.(1)求反比例函数与一次函数的解析式;(2)求的面积.
参考答案一、选择题(每小题3分,共30分)1、D【分析】先利用顶点式得到抛物线的顶点坐标为,抛物线的顶点坐标为,然后利用点平移的规律确定抛物线的平移情况.【详解】解:抛物线的顶点坐标为,抛物线的顶点坐标为,而点先向上平移2个单位,再向左平移3个单位后可得点,抛物线先向上平移2个单位,再向左平移3个单位后可得抛物线.故选:.【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.2、B【分析】作OE⊥AD于E,连接OD,在Rt△ODE中,根据垂径定理和勾股定理即可求解.【详解】解:作OE⊥AD于E,连接OD,则OD=.在Rt△ODE中,易得∠EDO为45,△ODE为等腰直角三角形,ED=OE,OD===.可得:ED=1,AD=2ED=2,所以B选项是正确的.【点睛】此题主要考查了正多边形和圆,本题需仔细分析图形,利用垂径定理与勾股定理即可解决问题.3、C【分析】利用因式分解法求解可得.【详解】解:∵x2=2x,∴x2﹣2x=0,则x(x﹣2)=0,∴x=0或x﹣2=0,解得:x1=0,x2=2,故选:C.【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.4、A【分析】连接BM.先判定△FAE≌△MAB(SAS),即可得到EF=BM.再根据BC=CD=AB=1,CM=2,利用勾股定理即可得到,Rt△BCM中,BM=,进而得出EF的长.【详解】解:如图,连接BM.∵△AEM与△ADM关于AM所在的直线对称,∴AE=AD,∠MAD=∠MAE.∵△ADM按照顺时针方向绕点A旋转90°得到△ABF,∴AF=AM,∠FAB=∠MAD.∴∠FAB=∠MAE∴∠FAB+∠BAE=∠BAE+∠MAE.∴∠FAE=∠MAB.∴△FAE≌△MAB(SAS).∴EF=BM.∵四边形ABCD是正方形,∴BC=CD=AB=1.∵DM=2,∴CM=2.∴在Rt△BCM中,BM=,∴EF=,故选:A.【点睛】本题考查正方形的性质、三角形的判定和性质,关键在于做好辅助线,熟记性质.5、C【解析】试题解析:∵二次函数y=ax2+bx+c的顶点为(1,-4),∴对称轴为x=1,而对称轴左侧图象与x轴交点横坐标的取值范围是-3<x<-2,∴右侧交点横坐标的取值范围是4<x<1.故选C.考点:图象法求一元二次方程的近似根.6、C【解析】两边开方得到x=±1.【详解】解:∵x1=4,
∴x=±1,
∴x1=1,x1=-1.
故选:C.【点睛】本题考查了解一元二次方程-直接开平方法:形如ax1+c=0(a≠0)的方程可变形为,当a、c异号时,可利用直接开平方法求解.7、B【分析】根据余弦函数是邻边比斜边,可得答案.【详解】解:由题意,得,,故选:.【点睛】本题考查了锐角三角函数的定义,利用余弦函数的定义是解题关键.8、A【分析】因为过双曲线上任意一点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=|k|,所以随着x的逐渐增大,矩形OAPB的面积将不变.【详解】解:依题意有矩形OAPB的面积=2×|k|=3,所以随着x的逐渐增大,矩形OAPB的面积将不变.
故选:A.【点睛】本题考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,解题的关键是掌握图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.9、D【解析】设A的纵坐标是b,则B的纵坐标也是b.把y=b代入y=得,b=,则x=,,即A的横坐标是,;同理可得:B的横坐标是:﹣.则AB=﹣(﹣)=.则S□ABCD=×b=1.故选D.10、D【分析】计算最大数19与最小数8的差即可.【详解】19-8=11,故选:D.【点睛】此题考查极差,即一组数据中最大值与最小值的差.二、填空题(每小题3分,共24分)11、4【分析】过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,利用正方形的性质易证△ADG≌△DCF,得到AG=DF,设D点横坐标为m,则OF=AG=DF=m,易得OE为△CDF的中位线,进而得到OF=OC,然后利用勾股定理建立方程求出,进而求出k.【详解】如图,过D作DF⊥x轴并延长FD,过A作AG⊥DF于点G,∵四边形ABCD为正方形,∴CD=AD,∠ADC=90°∴∠ADG+∠CDF=90°又∵∠DCF+∠CDF=90°∴∠ADG=∠DCF在△ADG和△DCF中,∵∠AGD=∠DFC=90°,∠ADG=∠DCF,AD=CD∴△ADG≌△DCF(AAS)∴AG=DF设D点横坐标为m,则OF=AG=DF=m,∴D点坐标为(m,m)∵OE∥DF,CE=ED∴OE为△CDF的中位线,∴OF=OC∴CF=2m在Rt△CDF中,∴解得又∵D点坐标为(m,m)∴故答案为:4.【点睛】本题考查反比例函数与几何的综合问题,需要熟练掌握正方形的性质,全等三角形的判定和性质,中位线的判定和性质以及勾股定理,解题的关键是作出辅助线,利用全等三角形推出点D的横纵坐标相等.12、3【分析】已知直线y=x+2与反比例函数y=的图象在第一象限交于点P,设点P的坐标为(m,m+2),根据OP=,列出关于m的等式,即可求出m,得出点P坐标,且点P在反比例函数图象上,所以点P满足反比例函数解析式,即可求出k值.【详解】∵直线y=x+2与反比例函数y=的图象在第一象限交于点P∴设点P的坐标为(m,m+2)∵OP=∴解得m1=1,m2=-3∵点P在第一象限∴m=1∴点P的坐标为(1,3)∵点P在反比例函数y=图象上∴解得k=3故答案为:3【点睛】本题考查了一次函数与反比例函数交点问题,交点坐标同时满足一次函数和反比例函数解析式,根据直角坐标系中点坐标的性质,可利用勾股定理求解.13、4.5,101【分析】证明,然后根据相似三角形的性质可解.【详解】解:∵,,∴,∵,∴,∴,,∴AC=4.5,y=101.故答案是:x=4.5,y=101.【点睛】本题考查了相似三角形的判定和性质,要熟悉相似三角形的各种判定方法,关键在找角相等以及边的比例关键.14、(-3,4)【详解】在平面直角坐标系中,点(3,-4)关于原点对称的点的坐标是(-3,4).故答案为(-3,4).【点睛】本题考查关于原点对称的点的坐标,两个点关于原点对称时,它们的坐标符号相反.15、9.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第1个图形中小圆的个数为21;则知第n个图形中小圆的个数为n(n+1)+1.依此列出方程即可求得答案.【详解】解:设第n个图形有91个小圆,依题意有n2+n+1=91即n2+n=90(n+10)(n﹣9)=0解得n1=9,n2=﹣10(不合题意舍去).故第9个图形有91个小圆.故答案为:9【点睛】本题考查(1)、一元二次方程的应用;(2)、规律型:图形的变化类.16、【分析】先根据直角三角形的性质得出AD=CD,进而根据等边对等角得出,再根据即得.【详解】∵为斜边上的中线∴AD=CD∴∵∴故答案为:.【点睛】本题考查直角三角形的性质及等腰三角形的性质,解题关键是熟知直角三角形斜边上的中线等于斜边的一半.17、(3,﹣2)【解析】根据平面直角坐标系内两点关于原点对称横纵坐标互为相反数,即可得出答案.【详解】解:平面直角坐标系内两点关于原点对称横纵坐标互为相反数,∴点(﹣3,2)关于原点对称的点的坐标是(3,﹣2),故答案为(3,﹣2).【点睛】本题主要考查了平面直角坐标系内点的坐标位置关系,难度较小.18、.x1=-3,x2=2【详解】解:∵抛物线y=ax2+bx+c(a≠0)与x轴的两个交点的坐标分别是(−3,0),(2,0),∴当x=−3或x=2时,y=0,即方程的解为故答案为:三、解答题(共66分)19、(1);(2).【解析】(1)根据概率公式即可得到结论;(2)画出树状图即可得到结论.【详解】解答:(1)一辆车经过收费站时,选择A通道通过的概率是,故答案为.(2)列表如下:ABCDAAAABACADBBABBBCBDCCACBCCCDDDADBDCDD由表可知,共有16种等可能结果,其中选择不同通道通过的有12种结果,所以选择不同通道通过的概率为=.【点睛】本题考查了列表法与树状图法,概率公式,正确的画出树状图是解题的关键.20、(1)证明见解析;(2)阴影部分面积为【解析】(1)连接OC,易证∠BCD=∠OCA,由于AB是直径,所以∠ACB=90°,所以∠OCA+OCB=∠BCD+∠OCB=90°,CD是⊙O的切线;(2)设⊙O的半径为r,AB=2r,由于∠D=30°,∠OCD=90°,所以可求出r=2,∠AOC=120°,BC=2,由勾股定理可知:AC=2,分别计算△OAC的面积以及扇形OAC的面积即可求出阴影部分面积.【详解】(1)如图,连接OC,∵OA=OC,∴∠BAC=∠OCA,∵∠BCD=∠BAC,∴∠BCD=∠OCA,∵AB是直径,∴∠ACB=90°,∴∠OCA+OCB=∠BCD+∠OCB=90°∴∠OCD=90°∵OC是半径,∴CD是⊙O的切线(2)设⊙O的半径为r,∴AB=2r,∵∠D=30°,∠OCD=90°,∴OD=2r,∠COB=60°∴r+2=2r,∴r=2,∠AOC=120°∴BC=2,∴由勾股定理可知:AC=2,易求S△AOC=×2×1=S扇形OAC=,∴阴影部分面积为.【点睛】本题考查圆的综合问题,涉及圆的切线判定,勾股定理,含30度的直角三角形的性质,等边三角形的性质等知识,熟练掌握和灵活运用相关知识是解题的关键.21、(1)2;(2)36;(3).【分析】(1)由AC⊥BC,AC⊥AD,得出∠ACB=∠CAD=90°,利用含30°直角三角形三边的特殊关系以及勾股定理,就可以解决问题;(2)将△BAD绕点B顺时针旋转到△BCE,则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.这样可以求∠DCE=90°,则可以得到DE的长,进而把四边形ABCD的面积转化为△BCD和△BCE的面积之和,△BDE和△CDE的面积容易算出来,则四边形ABCD面积可求;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,则BE=CE=BC,证出△ABE是等边三角形,得出∠BAE=∠AEB=60°,AE=BE=CE,得出∠EAC=∠ECA==30°,证出∠BAC=∠BAE+∠EAC=90°,得出AC=AB,设AB=x,则AC=x,由直角三角形的性质得出CF=3,从而DF=3,设CG=a,AF=y,证明△ACF∽△CDG,得出,求出y=,由勾股定理得出y2=(x)2-32=3x2-9,b2=62-a2=102-(2x+a)2,(2x+a)2+b2=132,整理得出a=,进而得y=,得出[]2=3x2-9,解得x2=34-6,得出y2=()2,解得y=-3,得出AD=AF+DF=,由三角形面积即可得出答案.【详解】解:(1)∵AC⊥BC,AC⊥AD,∴∠ACB=∠CAD=90°,∵对角互余四边形ABCD中,∠B=60°,∴∠D=30°,在Rt△ABC中,∠ACB=90°,∠B=60°,BC=1,∴∠BAC=30°,∴AB=2BC=2,AC=BC=,在Rt△ACD中,∠CAD=90°,∠D=30°,∴AD=AC=3,CD=2AC=2,∵S△ABC=•AC•BC=××1=,S△ACD═•AC•AD=××3=,∴S四边形ABCD=S△ABC+S△ACD=2,故答案为:2;(2)将△BAD绕点B顺时针旋转到△BCE,如图②所示:则△BCE≌△BAD,连接DE,作BH⊥DE于H,作CG⊥DE于G,作CF⊥BH于F.∴∠CFH=∠FHG=∠HGC=90°,∴四边形CFHG是矩形,∴FH=CG,CF=HG,∵△BCE≌△BAD,∴BE=BD=13,∠CBE=∠ABD,∠CEB=∠ADB,CE=AD=8,∵∠ABC+∠ADC=90°,∴∠DBC+∠CBE+∠BDC+∠CEB=90°,∴∠CDE+∠CED=90°,∴∠DCE=90°,在△BDE中,根据勾股定理可得:DE===10,∵BD=BE,BH⊥DE,∴EH=DH=5,∴BH===12,∴S△BED=•BH•DE=×12×10=60,S△CED=•CD•CE=×6×8=24,∵△BCE≌△BAD,∴S四边形ABCD=S△BCD+S△BCE=S△BED﹣S△CED=60﹣24=36;(3)取BC的中点E,连接AE,作CF⊥AD于F,DG⊥BC于G,如图③所示:则BE=CE=BC,∵BC=2AB,∴AB=BE,∵∠ABC=60°,∴△ABE是等边三角形,∴∠BAE=∠AEB=60°,AE=BE=CE,∴∠EAC=∠ECA=∠AEB=30°,∴∠BAC=∠BAE+∠EAC=90°,∴AC=AB,设AB=x,则AC=x,∵∠ADC=30°,∴CF=CD=3,DF=CF=3,设CG=a,AF=y,在四边形ABCD中,∠ABC+∠BCD+∠ADC+∠BAC+∠DAC=360°,∴∠DAC+∠BCD=180°,∵∠BCD+∠DCG=180°,∴∠DAC=∠DCG,∵∠AFC=∠CGD=90°,∴△ACF∽△CDG,∴=,即=,∴y=,在Rt△ACF中,Rt△CDG和Rt△BDG中,由勾股定理得:y2=(x)2﹣32=3x2﹣9,b2=62﹣a2=102﹣(2x+a)2,(2x+a)2+b2=132,整理得:x2+ax﹣16=0,∴a=,∴y==×=,∴[]2=3x2﹣9,整理得:x4﹣68x2+364=0,解得:x2=34﹣6,或x2=34+6(不合题意舍去),∴x2=34﹣6,∴y2=3(34﹣6)﹣9=93﹣18=93﹣2=()2,∴y=﹣3,∴AF=﹣3,∴AD=AF+DF=,∴△ACD的面积=AD×CF=××3=.【点睛】此题是四边形综合题,主要考查了新定义的理解和应用,相似三角形的判定和性质,勾股定理,等边三角形的判定与性质,旋转的性质,全等三角形的性质,含30°角的直角三角形的性质等知识;本题综合性强,有一定难度.22、详见解析.【解析】由切线的性质可知∠ODE=90°,证明OD∥AE即可解决问题.【详解】连接OD.∵DE是⊙O的切线,∴OD⊥DE,∴∠ODE=90°.∵OA=OD,∴∠OAD=∠ODA.∵AD平分∠BAC,∴∠CAD=∠DAB,∴∠CAB=∠ADO,∴OD∥AE,∴∠E+∠ODE=180°,∴∠E=90°,∴DE⊥AE.【点睛】本题考查了切线的性质,平行线的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.23、(1)a=4,k=8;(2)①E(5,);②满足条件的m的值为4或5或2.【分析】(1)把点A坐标代入直线AB的解析式中,求出a,求出点B坐标,再将点B坐标代入反比例函数解析式中求出k;(2)①确定出点D(5,4),得到求出点E坐标;②先表示出点C,D坐标,再分三种情况:当BC=CD时,判断出点B在AC的垂直平分线上,即可得出结论,当BC=BD时,表示出BC,用BC=BD建立方程求解即可得出结论,当BD=AB时,m=AB,根据勾股定理计算即可.【详解】解:(1)∵点A(0,8)在直线y=﹣2x+b上,∴﹣2×0+b=8,∴b=8,∴直线AB的解析式为y=﹣2x+8,将点B(2,a)代入直线AB的解析式y=﹣2x+8中,得﹣2×2+8=a,∴a=4,∴B(2,4),将B(2,4)代入反比例函数解析式y=(x>0)中,得k=xy=2×4=8;(2)①由(1)知,B(2,4),k=8,∴反比例函数解析式为y=,当m=3时,将线段AB向右平移3个单位长度,得到对应线段CD,∴D(2+3,4),即D(5,4),∵DF⊥x轴于点F,交反比例函数y=的图象于点E,∴E(5,);②如图,∵将线段AB向右平移m个单位长度(m>0),得到对应线段CD,∴CD=AB,AC=BD=m,∵A(0,8),B(2,4),∴C(m,8),D((m+2,4),△BCD是等腰三形,当BC=CD时,BC=AB,∴点B在线段AC的垂直平分线上,∴m=2×2=4,当BC=BD时,B(2,4),
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年文化创意产业小额担保贷款保证反担保合同3篇
- 2025年度智慧农业用地买卖合同4篇
- 二零二五年度龙门吊租赁项目安全教育与培训合同4篇
- 二零二五版房屋室内空气净化与维修合同3篇
- 铁路贯通线光伏系统设计与储能配置研究
- 专家资质聘用合作合同(2024年度版)一
- 2025年度铲车租赁与施工进度监督合同4篇
- DTI在甲状腺相关性眼病评估中的应用
- 甘露寡糖缓解结肠炎和抑郁样行为的机制研究及其产品研发
- 增材制造生物材料改进型多孔植入物的力学各向异性分析
- 通用电子嘉宾礼薄
- 2023年浙江省公务员考试面试真题解析
- GB/T 5796.3-2022梯形螺纹第3部分:基本尺寸
- GB/T 16407-2006声学医用体外压力脉冲碎石机的声场特性和测量
- 简洁蓝色科技商业PPT模板
- 钱素云先进事迹学习心得体会
- 道路客运车辆安全检查表
- 宋晓峰辣目洋子小品《来啦老妹儿》剧本台词手稿
- 附录C(资料性)消防安全评估记录表示例
- 噪音检测记录表
- 推荐系统之协同过滤算法
评论
0/150
提交评论