




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省南通市通州区通州区育才中学2023-2024学年数学九上期末质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.在平面直角坐标系中,将点A(−1,2)向右平移3个单位长度得到点B,则点B关于x轴的对称点C的坐标是()A.(−4,−2) B.(2,2) C.(−2,2) D.(2,−2)2.将抛物线y=2(x-7)2+3平移,使平移后的函数图象顶点落在y轴上,则下列平移中正确的是()A.向上平移3个单位B.向下平移3个单位C.向左平移7个单位D.向右平移7个单位3.如图,在中,,则的值为()A. B. C. D.4.方程的根是()A.2 B.0 C.0或2 D.0或35.下列图案中,是中心对称图形的是()A. B. C. D.6.下列图形中既是中心对称图形又是轴对称图形的是()A. B.C. D.7.下列说法错误的是()A.必然事件的概率为1 B.心想事成,万事如意是不可能事件C.平分弦(非直径)的直径垂直弦 D.的平方根是8.如图,⊙O是△ABC的外接圆,连接OC、OB,∠BOC=100°,则∠A的度数为()A.30° B.40° C.50° D.60°9.抛物线与坐标轴的交点个数为()A.个 B.个或个 C.个 D.不确定10.在中,,,若,则的长为()A. B. C. D.二、填空题(每小题3分,共24分)11.已知圆锥的底面圆的半径是,母线长是,则圆锥的侧面积是________.12.如图,在菱形中,对角线交于点,过点作于点,已知BO=4,S菱形ABCD=24,则___.13.计算:_______.14.如图,在矩形ABCD中,DE⊥AC,垂足为E,且tan∠ADE=,AC=5,则AB的长____.15.已知扇形的圆心角为90°,弧长等于一个半径为5cm的圆的周长,用这个扇形恰好围成一个圆锥的侧面(接缝忽略不计).则该圆锥的高为__________cm.16.为估计某水库鲢鱼的数量,养鱼户李老板先捞上150条鲢鱼并在鲢鱼身上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,发现带红色记号的鱼有三条,据此可估计出该水库中鲢鱼约有________条.17.小刚身高,测得他站立在阳光下的影子长为,紧接着他把手臂竖直举起,测得影子长为,那么小刚举起的手臂超出头顶的高度为________.18.如图,直线与轴交于点,与轴交于点,点在轴的正半轴上,,过点作轴交直线于点,若反比例函数的图象经过点,则的值为_________________.三、解答题(共66分)19.(10分)如图所示,有一电路AB是由如图所示的开关控制,闭合a,b,c,d四个开关中的任意两个开关.(1)请用列表或画树状图的方法,列出所有可能的情况;(2)求出使电路形成通路(即灯泡亮)的概率.20.(6分)(1)计算.sin30°tan45°-cos30°tan30°+sin45°tan60°(2)已知cos(180°﹣a)=﹣cosa,请你根据给出的公式试求cos120°的值21.(6分)在Rt△ABC中,∠C=90°,∠B=60°,a=2.求b和c.22.(8分)如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣2,﹣4)、B(0,﹣4)、C(1,﹣2).(1)△ABC关于原点O对称的图形是△A1B1C1,不用画图,请直接写出△A1B1C1的顶点坐标:A1,B1,C1;(2)在图中画出△ABC关于原点O逆时针旋转90°后的图形△A2B2C2,请直接写出△A2B2C2的顶点坐标:A2,B2,C2.23.(8分)已知:如图,在△ABC中,点D,E分别在边AB,BC上,BA•BD=BC•BE(1)求证:△BDE∽△BCA;(2)如果AE=AC,求证:AC2=AD•AB.24.(8分)某校八年级学生在一起射击训练中,随机抽取10名学生的成绩如下表,回答问题:环数6789人数152(1)填空:_______;(2)10名学生的射击成绩的众数是_______环,中位数是_______环;(3)若9环(含9环)以上评为优秀射手,试估计全年级500名学生中有_______名是优秀射手.25.(10分)如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系?请说明理由;(2)当AB=DC时,求证:四边形AEFD是矩形.26.(10分)如图所示,是的直径,其半径为,扇形的面积为.(1)求的度数;(2)求的长度.
参考答案一、选择题(每小题3分,共30分)1、D【分析】首先根据横坐标右移加,左移减可得B点坐标,然后再关于x轴对称点的坐标特点:横坐标不变,纵坐标符号改变可得答案.【详解】解:点A(-1,2)向右平移3个单位长度得到的B的坐标为(-1+3,2),即(2,2),
则点B关于x轴的对称点C的坐标是(2,-2),故答案为D2、C【解析】按“左加右减括号内,上加下减括号外”的规律平移即可得出所求函数的解析式.【详解】依题意可知,原抛物线顶点坐标为(7,3),平移后抛物线顶点坐标为(0,t)(t为常数),则原抛物线向左平移7个单位即可.故选C.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a(x-h)2+k
(a,b,c为常数,a≠0),确定其顶点坐标(h,k),在原有函数的基础上“h值正右移,负左移;k值正上移,负下移”.3、D【解析】过点A作,垂足为D,在中可求出AD,CD的长,在中,利用勾股定理可求出AB的长,再利用正弦的定义可求出的值.【详解】解:过点A作,垂足为D,如图所示.在中,,;在中,,,.故选:D.【点睛】考查了解直角三角形以及勾股定理,通过解直角三角形及勾股定理,求出AD,AB的长是解题的关键.4、D【分析】先把右边的x移到左边,然后再利用因式分解法解出x即可.【详解】解:故选D.【点睛】本题是对一元二次方程的考查,熟练掌握一元二次方程的解法是解决本题的关键.5、C【解析】根据中心对称图形的概念即可得出答案.【详解】A选项中,不是中心对称图形,故该选项错误;B选项中,是轴对称图形,不是中心对称图形,故该选项错误;C选项中,是中心对称图形,故该选项正确;D选项中,不是中心对称图形,故该选项错误.故选C【点睛】本题主要考查中心对称图形,掌握中心对称图形的概念是解题的关键.6、B【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,是中心对称图形,故此选项正确;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,不是中心对称图形,故此选项错误;故选:B.【点睛】本题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、B【分析】逐一对选项进行分析即可.【详解】A.必然事件的概率为1,该选项说法正确,不符合题意;B.心想事成,万事如意是随机事件,该选项说法错误,符合题意;C.平分弦(非直径)的直径垂直弦,该选项说法正确,不符合题意;D.的平方根是,该选项说法正确,不符合题意;故选:B.【点睛】本题主要考查命题的真假,掌握随机事件,垂径定理,平方根的概念是解题的关键.8、C【分析】直接根据圆周角定理即可得出结论.【详解】∵⊙O是△ABC的外接圆,∠BOC=100°,∴∠A=∠BOC==50°.故选:C.【点睛】本题考查的是圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键.9、C【分析】根据题意,与y轴有一个交点,令y=0,利用根的判别式进行判断一元二次方程的根的情况,得到与x轴的交点个数,即可得到答案.【详解】解:抛物线与y轴肯定有一个交点;令y=0,则,∴==;∴抛物线与x轴有2个交点;∴抛物线与坐标轴的交点个数有3个;故选:C.【点睛】本题考查了二次函数与坐标轴的交点情况,以及一元二次方程根的判别式,解题的关键是掌握二次函数的性质,正确得到与坐标轴的交点.10、A【解析】根据解直角三角形的三角函数解答即可【详解】如图,∵cos53°=,∴AB=故选A【点睛】此题考查解直角三角形的三角函数解,难度不大二、填空题(每小题3分,共24分)11、【解析】先计算出圆锥的底面圆的周长=1π×8cm=16πcm,而圆锥的侧面展开图为扇形,然后根据扇形的面积公式进行计算.【详解】∵圆锥的底面圆的半径是8cm,
∴圆锥的底面圆的周长=1π×8cm=16πcm,
∴圆锥的侧面积=×10cm×16πcm=80πcm1.
故答案是:80π.【点睛】考查了圆锥的计算:圆锥的侧面展开图为扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥底面圆的周长.也考查了扇形的面积公式.12、【分析】根据菱形面积=对角线积的一半可求,再根据勾股定理求出,然后由菱形的面积即可得出结果.【详解】∵四边形是菱形,∴,,∴,∵,∴,∴,∴,∵,∴;故答案为.【点睛】本题考查了菱形的性质、勾股定理以及菱形面积公式.熟练掌握菱形的性质,由勾股定理求出是解题的关键.13、【分析】原式把变形为,然后逆运用积的乘方进行运算即可得到答案.【详解】解:=====.故答案为:.【点睛】此题主要考查了幂的运算,熟练掌握积的乘方运算法则是解答此题的关键.14、3.【分析】先根据同角的余角相等证明∠ADE=∠ACD,在△ADC根据锐角三角函数表示用含有k的代数式表示出AD=4k和DC=3k,从而根据勾股定理得出AC=5k,又AC=5,从而求出DC的值即为AB.【详解】∵四边形ABCD是矩形,∴∠ADC=90°,AB=CD,∵DE⊥AC,∴∠AED=90°,∴∠ADE+∠DAE=90°,∠DAE+∠ACD=90°,∴∠ADE=∠ACD,∴tan∠ACD=tan∠ADE==,设AD=4k,CD=3k,则AC=5k,∴5k=5,∴k=1,∴CD=AB=3,故答案为3.【点睛】本题考查矩形的性质和利用锐角三角函数解直角三角形,解决此类问题时需要将已知角的三角函数、已知边、未知边,转换到同一直角三角形中,然后解决问题.15、【分析】利用弧长公式求该扇形的半径,圆锥的轴截面为等腰三角形,其中底边为10,腰为母线即扇形的半径,根据勾股定理求圆锥的高.【详解】解:设扇形半径为R,根据弧长公式得,∴R=20,根据勾股定理得圆锥的高为:.故答案为:.【点睛】本题考查弧长公式,及圆锥的高与母线、底面半径之间的关系,底面周长等于扇形的弧长这个等量关系和勾股定理是解答此题的关键.16、10000【解析】试题解析:设该水库中鲢鱼约有x条,由于李老板先捞上150条鲢鱼并在上做红色的记号,然后立即将这150条鲢鱼放回水库中,一周后,李老板又捞取200条鲢鱼,数一数带红色记号的鱼有三条,由此依题意得200:3=x:150,∴x=10000,∴估计出该水库中鲢鱼约有10000条.17、0.5【分析】根据同一时刻身长和影长成比例,求出举起手臂之后的身高,与身高做差即可解题.【详解】解:设举起手臂之后的身高为x由题可得:1.7:0.85=x:1.1,解得x=2.2,则小刚举起的手臂超出头顶的高度为2.2-1.7=0.5m【点睛】本题考查了比例尺的实际应用,属于简单题,明确同一时刻的升高和影长是成比例的是解题关键.18、1【解析】先求出直线y=x+2与坐标轴的交点坐标,再由三角形的中位线定理求出CD,得到C点坐标.【详解】解:令x=0,得y=x+2=0+2=2,
∴B(0,2),
∴OB=2,
令y=0,得0=x+2,解得,x=-6,
∴A(-6,0),
∴OA=OD=6,
∵OB∥CD,
∴CD=2OB=4,
∴C(6,4),
把c(6,4)代入y=(k≠0)中,得k=1,
故答案为:1.【点睛】本题考查了一次函数与反比例函数的综合,需要掌握求函数图象与坐标轴的交点坐标方法,三角形的中位线定理,待定系数法.本题的关键是求出C点坐标.三、解答题(共66分)19、(1)列表见解析;(2)使电路形成通路(即灯泡亮)的概率是【分析】(1)按题意列表即可,注意表格中对角线(2)由列表可知共有12种可能,其中有8种可形成通路,由此可得概率【详解】(1)列表法abcdaabacadbbabcbdccacbcdddadbdc(2)使电路形成通路(即灯泡亮)的概率是P=20、(1);(2)【分析】(1)由题意直接利用特殊角的三角函数值代入进行计算即可;(2)根据题意利用公式cos(180°-a)=-cosa进行变形,并代入特殊角的三角函数值进行计算即可.【详解】解:(1)sin30°tan45°-cos30°tan30°+sin45°tan60°==.(2)由题意cos(180°﹣a)=﹣cosa可知,cos120°=cos(180°﹣60°)=﹣cos60°=.【点睛】本题考查实数的混合运算,解题的关键是记住特殊角的三角函数值进行代入求值即可.21、【分析】根据题意画出图形,结合锐角三角函数的定义选择合适的函数即可。【详解】∵∠B=60°,a=2【点睛】本题考查解直角三角形,根据已知条件选择合适的三角函数是解题的关键。22、(1)(2,4),(0,4),(﹣1,2);(2)作图见解析;(4,﹣2),(4,0),(2,1).【分析】(1)根据中心对称图形的概念求解可得;(2)利用旋转变换的定义和性质作出对应点,再首尾顺次连接即可得.【详解】(1)△A1B1C1的顶点坐标:A1(2,4),B1(0,4),C1(﹣1,2),故答案为:(2,4),(0,4),(﹣1,2).(2)如图所示,△A2B2C2即为所求,A2(4,﹣2),B2(4,0),C2(2,1),故答案为:(4,﹣2),(4,0),(2,1).【点睛】本题考查中心对称图形和旋转变换,作旋转变换时需注意旋转中心和旋转角,分清逆时针和顺时针旋转.23、(1)证明见解析;(2)证明见解析.【解析】(1)由BA•BD=BC•BE得,结合∠B=∠B,可证△ABC∽△EBD;(2)先根据BA•BD=BC•BE,∠B=∠B,证明△BAE∽△BCD,再证明△ADC∽△ACB,根据相似三角形的对应边长比例可证明结论.【详解】(1)证明:∵BA•BD=BC•BE.∴,∵∠B=∠B,∴△BDE∽△BCA;(2)证明:∵BA•BD=BC•BE.∴,∵∠B=∠B,∴△BAE∽△BCD,∴,∵AE=AC,∴,∵∠AEC=∠B+∠BAE,∠ACE=∠ACD+∠BCD,∴∠B=∠ACD.∵∠BAC=∠BAC∴△ADC∽△ACB,∴.【点睛】本题主要考查相似三角形的判定与性质,熟练掌握两三角形相似的判定方法是解题的关键.相似三角形的判定方法有:①对应角相等,对应边成比例的两个三角形叫做相似三角形;②平行于三角形一边的直线和其他两边或两边延长线相交,所构成的三角形与原三角形相似;③根据两角相等的两个三角形相似;④两边对应成比例,且夹角相等的两个三角形相似判定即可;⑤三边对应成比例得两个三角形相似.24、(1)1;(1)2,2;(3)3【分析】(1)利用总人数减去其它环的人数即可;(1)根据众数的定义和中位数的定义即可得出结论;(3)先计算出9环(含9环)的人数占总人数的百分率,然后乘500即可.【详解】解:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 梦幻的星空我的科幻想象作文(13篇)
- 我的语文老师记一位让人敬佩的老师作文13篇
- 2025年钻采设备专用件项目提案报告模板
- 冠心病的常见病因和症状
- 2025年公务员录用考试审计专业试卷(审计学科发展研究)
- 2025电子商务师(高级)考试试卷:电子商务大数据与人工智能应用试题
- 动物朋友们幼儿园动物主题写作(10篇)
- 煤炭燃烧效率提升与清洁能源产业融合的2025年市场分析报告001
- 2025年病种质量控制方案试题
- 单位暑假工劳动协议书
- 2025年人教版小学五年级语文(下册)期末试卷附答案
- 中国人民警察学院面试内容与回答
- 行业特定市场调研方法与技巧分享
- 2025至2030年中国液压行业市场动态分析及发展趋向研判报告
- 广东省广州市海珠区2024-2025学年八年级下学期期末 历史自编练习试卷(含解析)
- 高校“十五五”发展规划编制应着重考虑的关键任务
- 大骨节考试题及答案
- 护理病历质控标准
- 2025年小学五年级数学期末冲刺卷:数学基础知识巩固
- CSCO恶性血液病诊疗指南(2025)解读
- T/CHTS 20036-2023公路桥梁用硬聚氯乙烯声测管
评论
0/150
提交评论