




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年山东省临沂市枣沟头中心中学高二数学理上学期摸底试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.二维空间中圆的一维测度(周长),二维测度(面积),观察发现;三维空间球的二维测度(表面积),三维测度(体积),观察发现.则由四维空间中“超球”的三维测度,猜想其四维测度(
)A. B. C. D.参考答案:B由题意可知,四维测度的导数,则本题选择B选项.点睛:一是合情推理包括归纳推理和类比推理,所得到的结论都不一定正确,其结论的正确性是需要证明的.二是在进行类比推理时,要尽量从本质上去类比,不要被表面现象所迷惑;否则只抓住一点表面现象甚至假象就去类比,就会犯机械类比的错误.2.已知函数,其图象在点(0,0)处的切线方程为,又当时,有恒成立,则实数m的取值范围是A.(-∞,-1)
B.(-1,+∞)C.(-∞,-3)
D.(-3,+∞)参考答案:D经过(0,0),所以可得,所以,又因为函数,其图象在点(0,0)处的切线方程为y=x,所以,可得a=1,得,为奇函数,又,为R上的增函数,,,,,∴当时,恒成立,当时,,,即,令,,在(0,1]上单调递减,,,即实数m的取值范围是,故选D.
3.若P(2,﹣1)为圆(x﹣1)2+y2=25的弦AB的中点,则直线AB的方程是()A.x﹣y﹣3=0 B.2x+y﹣3=0 C.x+y﹣1=0 D.2x﹣y﹣5=0参考答案:A【考点】直线和圆的方程的应用;直线与圆相交的性质.【专题】计算题.【分析】由圆心为O(1,0),由点P为弦的中点,则该点与圆心的连线垂直于直线AB求解其斜率,再由点斜式求得其方程.【解答】解:已知圆心为O(1,0)根据题意:Kop=kABkOP=﹣1kAB=1,又直线AB过点P(2,﹣1),∴直线AB的方程是x﹣y﹣3=0故选A【点评】本题主要考查直线与圆的位置关系及其方程的应用,主要涉及了弦的中点与圆心的连线与弦所在的直线垂直.4.(
)
参考答案:B5.已知是空间中两条不同直线,是两个不同平面,且,给出下列命题:①若,则;
②若,则;③若,则;
④若,则其中正确命题的个数是
(
)A.1
B.2
C.3
D.4参考答案:B6.对任意非零实数a,b,若a※b的运算原理如图所示,则※=(
)A.1 B.2 C.3 D.4参考答案:A分析:由程序框图可知,该程序的作用是计算分段函数函数值,由分段函数的解析式计算即可得结论.详解:由程序框图可知,该程序的作用是计算分段函数函数值,因为,故选A.点睛:算法是新课标高考的一大热点,其中算法的交汇性问题已成为高考的一大亮,这类问题常常与函数、数列、不等式等交汇自然,很好地考查考生的信息处理能力及综合运用知识解决问題的能力,解决算法的交汇性问题的方:(1)读懂程序框图、明确交汇知识,(2)根据给出问题与程序框图处理问题即可.7.曲线的一条切线与直线垂直,则的方程为(
)A.
B.
C.
D.参考答案:D略8.若实轴长为2的双曲线上恰有4个不同的点满足,其中,,则双曲线C的虚轴长的取值范围为(
)A. B. C. D.参考答案:C【分析】设点,由结合两点间的距离公式得出点的轨迹方程,将问题转化为双曲线与点的轨迹有个公共点,并将双曲线的方程与动点的轨迹方程联立,由得出的取值范围,可得出答案。【详解】依题意可得,设,则由,得,整理得.由得,依题意可知,解得,则双曲线C的虚轴长.9.点是椭圆上的一点,是焦点,且,则△的面积是A. B. C.
D. 参考答案:A10.圆的圆心坐标为(
)A.
B.
C.
D.参考答案:D二、填空题:本大题共7小题,每小题4分,共28分11.圆x2+y2+Dx+Ey+F=0关于直线l1:x-y+4=0与直线l2:x+3y=0都对称,则D=________,E=________.参考答案:12.已知过点恰能作曲线的两条切线,则m的值是______.参考答案:-3或-2设切点为(a,a3-3a).∵f(x)=x3-3x,∴f'(x)=3x2-3,∴切线的斜率k=3a2-3,由点斜式可得切线方程为y-(a3-3a)=(3a2-3)(x-a).∵切线过点A(1,m),∴m-(a3-3a)=(3a2-3)(1-a),即2a3-3a2=-3-m.∵过点A(1,m)可作曲线y=f(x)的两条切线,∴关于a的方程2a3-3a2=-3-m有两个不同的根.令g(x)=2x3-3x2,∴g'(x)=6x2-6x.令g'(x)=0,解得x=0或x=1,当x<0时,g'(x)>0,当0<x<1时,g'(x)<0,当x>1时,g'(x)>0,∴g(x)在(-∞,0)内单调递增,在(0,1)内单调递减,在(1,+∞)内单调递增,∴当x=0时,g(x)取得极大值g(0)=0,当x=1时,g(x)取得极小值g(1)=-1.关于a的方程2a3-3a2=-3-m有两个不同的根,等价于y=g(x)与y=-3-m的图象有两个不同的交点,∴-3-m=-1或-3-m=0,解得m=-3或m=-2,∴实数m的值是-3或-2.13.若x>2,则x+的最小值为
.参考答案:4【考点】基本不等式.【分析】本题可以配成积为定值形式,然后用基本不等式得到本题结论.【解答】解:∵x>2,∴x﹣2>0,∴x+=x﹣2++2≥2+2=4,当且仅当x=3时取等号,∴x+的最小值为4,故答案为:414.点M(x,y)是不等式组表示的平面区域Ω内的一动点,且不等式2x﹣y+m≤0恒成立,则m的取值范围是.参考答案:【考点】7C:简单线性规划.【分析】由约束条件作出可行域,把m≤﹣2x+y恒成立转化为m≤(y﹣2x)min,设z=y﹣2x,利用线性规划知识求出z的最小值得答案.【解答】解:由约束条件作出可行域如图,由m≤﹣2x+y恒成立,则m≤(y﹣2x)min,设z=y﹣2x,则直线y=2x+z在点A处纵截距最小为,∴.故答案为:.15.数据-2,-1,0,1,2的方差是____________
参考答案:2略16.同时掷四枚均匀的硬币,有三枚“正面向上”的概率是____________.参考答案:17.在平面上,我们如果用一条直线去截正方形的一个角,那么截下的一个直角三角形,按图所标边长,由勾股定理有:c2=a2+b2.设想正方形换成正方体,把截线换成如图的截面,这时从正方体上截下三条侧棱两两垂直的三棱锥O-LMN,如果用S1,S2,S3表示三个侧面面积,S4表示截面面积,那么类比得到的结论是________.参考答案:S+S+S=S略三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.已知数列{an}的前n项和为Sn,a1=1,an≠0,anan+1=4Sn﹣1.(Ⅰ)求{an}的通项公式;(Ⅱ)证明:++…+<2.参考答案:【考点】数列与不等式的综合;数列的求和;数列递推式.【分析】(Ⅰ)由已知数列递推式可得an+1an+2=4Sn+1﹣1,与原递推式作差可得an+2﹣an=4,说明{a2n﹣1}是首项为1,公差为4的等差数列,{a2n}是首项为3,公差为4的等差数列,分别求出通项公式后可得{an}的通项公式;(Ⅱ)由等差数列的前n项和求得Sn,取其倒数后利用放缩法证明++…+<2.【解答】(I)解:由题设,anan+1=4Sn﹣1,得an+1an+2=4Sn+1﹣1.两式相减得an+1(an+2﹣a)=4an+1.由于an+1≠0,∴an+2﹣an=4.由题设,a1=1,a1a2=4S1﹣1,可得a2=3.故可得{a2n﹣1}是首项为1,公差为4的等差数列,a2n﹣1=4n﹣3=2(2n﹣1)﹣1;{a2n}是首项为3,公差为4的等差数列,a2n=4n﹣1=2?2n﹣1.∴;(Ⅱ)证明:,当n>1时,由,得,∴.19.已知A(3,0),B(0,3),C(cosα,sinα).(1)若·=-1,求sin的值;(2)]O为坐标原点,若=,且α∈(0,π),求与的夹角.参考答案:(1)=(cosα-3,sinα),=(cosα,sinα-3),=(cosα-3)·cosα+sinα(sinα-3)=-1,得sin2α+cos2α-3(sinα+cosα)=-1,所以sin=.(2)因为=,所以(3-cosα)2+sin2α=13,所以cosα=-,因为α∈(0,π),所以α=,sinα=,所以C,所以=,设与的夹角为θ,则==,因为θ∈(0,π),所以θ=为所求.20.已知O为坐标原点,设动点M(2,t)(t>0).(1)若过点P(0,4)的直线l与圆C:x2+y2﹣8x=0相切,求直线l的方程;(2)求以OM为直径且被直线3x﹣4y﹣5=0截得的弦长为2的圆的方程;(3)设A(1,0),过点A作OM的垂线与以OM为直径的圆交于点N,求证:线段ON的长为定值,并求出这个定值.参考答案:【考点】圆方程的综合应用.【分析】(1)圆C:x2+y2﹣8x=0化为(x﹣4)2+y2=16,得到圆心C(4,0),半径r=4,分类讨论即可求直线l的方程;(2)设出以OM为直径的圆的方程,变为标准方程后找出圆心坐标和圆的半径,由以OM为直径的圆被直线3x﹣4y﹣5=0截得的弦长,过圆心作弦的垂线,根据垂径定理得到垂足为中点,由弦的一半,半径以及圆心到直线的距离即弦心距构成直角三角形,利用点到直线的距离公式表示出圆心到3x﹣4y﹣5=0的距离d,根据勾股定理列出关于t的方程,求出方程的解即可得到t的值,即可确定出所求圆的方程;(3)设出点N的坐标,由⊥得到两向量的数量积为0,利用平面向量的数量积的运算法则表示出一个关系式,又⊥,同理根据平面向量的数量积的运算法则得到另一个关系式,把前面得到的关系式代入即可求出线段ON的长,从而得到线段ON的长为定值.【解答】解:(1)圆C:x2+y2﹣8x=0化为(x﹣4)2+y2=16,得到圆心C(4,0),半径r=4.斜率不存在时,x=0满足题意;斜率存在时,设切线方程为y=kx+4,即kx﹣y+4=0,根据圆心到切线的距离等于半径可得4=,解得k=﹣,故切线方程为y=﹣x+4,综上所述,直线l的方程为y=﹣x+4或x=0.(2)以OM为直径的圆的方程为(x﹣1)2+(y﹣)=+1,其圆心为(1,),半径r=因为以OM为直径的圆被直线3x﹣4y﹣5=0截得的弦长为2所以圆心到直线3x﹣4y﹣5=0的距离d==,解得t=4所求圆的方程为(x﹣1)2+(y﹣2)2=5;(3)设N(x0,y0),则=(x0﹣1,y0),=(2,t),=(x0﹣2,y0﹣t),=(x0,y0),∵⊥,∴2(x0﹣1)+ty0=0,∴2x0+ty0=2,又∵⊥,∴x0(x0﹣2)+y0(y0﹣t)=0,∴x02+y02=2x0+ty0=2,所以||==为定值.21.(本题满分14分)设函数(1)求的值;
(2)若,求参考答案:解:(1)因为,所以
……4分
(2)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年新型建筑保温材料在建筑节能产业发展中的应用报告
- 智慧交通系统2025年交通流量预测技术在高速公路中的应用报告
- 2025年环保设备制造业市场分析:竞争态势与产品创新驱动因素研究报告
- 咨询工程师实务林轩课件
- 2025年医药流通行业供应链协同与成本精细化管理报告
- 江苏省南京市第十八中学2025年七年级英语第二学期期末达标检测模拟试题含答案
- 安庆四中学2025届七年级英语第二学期期末统考试题含答案
- 2025年医药流通供应链优化与成本控制关键环节优化与政策导向报告
- 汽车与交通设备行业:新能源汽车动力电池回收利用政策及市场分析报告
- 2025年远程医疗服务在分级诊疗中的远程教育与实践培训报告
- 配电室巡检培训
- 项目部组织安排
- 妊娠期非产科手术麻醉管理
- 武警防暴队形课件
- DB21T 3163-2019 辽宁省绿色建筑施工图设计评价规程
- 采购合规培训
- 党建标准化建设培训
- 石油勘探合同三篇
- 临时停车场设施建设方案
- 小学家校共育合作实施方案
- 警用执法记录仪培训
评论
0/150
提交评论