版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省扬州市仪征市、高邮市2023年八年级数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每题4分,共48分)1.如图,AB∥CD,CE∥BF,A、E、F、D在一直线上,BC与AD交于点O,且OE=OF,则图中有全等三角形的对数为()A.2 B.3 C.4 D.52.立方根等于本身的数是()A.-1 B.0 C.±1 D.±1或03.点M(﹣2,1)关于y轴的对称点N的坐标是()A.(﹣2,﹣1)B.(2,1)C.(2,﹣1)D.(1,﹣2)4.计算的结果是()A. B. C. D.5.式子在实数范围内有意义,则的取值范围是()A. B. C. D.6.如图,,以的三边为边向外作正方形,其面积分别为,,,且,,则为()A.3 B.4 C.5 D.97.如图,四边形ABCD是菱形,∠ABC=120°,BD=4,则BC的长是()A.4 B.5 C.6 D.48.下列几个数中,属于无理数的数是()A. B. C.0.101001 D.9.下列运算中正确的是()A.B.C.D.10.张师傅驾车从甲地到乙地匀速行驶,行驶中油箱剩余油量(升)与行驶时间(小时)之间的关系式为,这里的常数“”,“”表示的实际意义分别是()A.“”表示每小时耗油升,“”表示到达乙地时油箱剩余油升B.“”表示每小时耗油升,“”表示出发时油箱原有油升C.“”表示每小时耗油升,“”表示每小时行驶千米D.“”表示每小时行驶千米,“”表示甲乙两地的距离为千米11.能使分式有意义的条件是()A. B. C. D.12.浚县古城是闻名遐迩的历史文化名城,“元旦”期间相关部门对到浚县观光游客的出行方式进行了随机抽样调查,整理后绘制了两幅统计图(尚不完整),根据图中的信息,下列结论错误的是()A.此次调查的总人数为5000人B.扇形图中的为10%C.样本中选择公共交通出行的有2500人D.若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有2.5万人二、填空题(每题4分,共24分)13.如图,直线与轴,轴分别交于点,点,是上的一点,若将沿折叠,使点恰好落在轴上的点处,则直线的表达式是_________.14.如图,在RtABC中,∠C=90°,BD是ABC的平分线,交AC于D,若CD=n,AB=m,则ABD的面积是_______.15.如图,在若中,是边上的高,是平分线.若则=_____16.计算:_______.17.已知多边形的内角和等于外角和的三倍,则边数为___________.18.如图,已知Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,则AB=cm.三、解答题(共78分)19.(8分)如图,,分别是,中点,,垂足为,,垂足为,与交于点.(1)求证:;(2)猜想与的数量关系,并证明.20.(8分)化简:(1);(2)21.(8分)如图,在△ABC中,AD是BC边上的高,AE平分∠BAC,∠B=42,∠C=70,求:∠DAE的度数.22.(10分)如图,已知,在Rt△ABC中,∠C=Rt∠,BC=6,AC=8,用直尺与圆规作线段AB的中垂线交AC于点D,连结DB.并求△BCD的周长和面积.23.(10分)如图,△ABC的顶点坐标分别为A(2,3),B(1,1),C(3,2).(1)将△ABC向下平移4个单位长度,画出平移后的△ABC;(2)画出△ABC关于y轴对称的△ABC.并写出点A,B,C的坐标.24.(10分)如图所示,已知AE⊥AB,AF⊥AC,AE=AB,AF=AC,试猜想CE、BF的关系,并说明理由.25.(12分)如图,△ABC是等腰直角三角形,且∠ACB=90°,点D是AB边上的一点(点D不与A,B重合),连接CD,过点C作CE⊥CD,且CE=CD,连接DE,AE.(1)求证:△CBD≌△CAE;(2)若AD=4,BD=8,求DE的长.26.如图,,,,请你判断是否成立,并说明理由.
参考答案一、选择题(每题4分,共48分)1、B【分析】分析已知和所求,先由CE∥BF,根据平行线性质得出内错角∠ECO=∠FBO,再由对顶角∠EOC=∠FOB和OE=OF,根据三角形的判定即可判定两个三角形全等;由上分析所得三角形全等,根据全等三角形的性质可得对应边相等,再根据三角形的判定定理即可判定另两对三角形是否全等.【详解】解:①∵CE∥BF,∴∠OEC=∠OFB,又∵OE=OF,∠COE=∠BOF,∴△OCE≌△OBF,∴OC=OB,CE=BF;②∵AB∥CD,∴∠ABO=∠DCO,∠AOB=∠COD,又∵OB=OC,∴△AOB≌△DOC;③∵AB∥CD,CE∥BF,∴∠D=∠A,∠CED=∠COD,又∵CE=BF,∴△CDE≌△BAF.故选B.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.2、D【分析】根据立方根的定义得到立方根等于本身的数.【详解】解:∵立方根是它本身有3个,分别是±1,1.故选:D.【点睛】本题主要考查了立方根的性质.对于特殊的数字要记住,立方根是它本身有3个,分别是±1,1.立方根的性质:(1)正数的立方根是正数.(2)负数的立方根是负数.(3)1的立方根是1.3、B【解析】根据“关于y轴对称的点,纵坐标相同,横坐标互为相反数”解答.【详解】点M(-2,1)关于y轴的对称点N的坐标是(2,1).故选B.【点睛】本题考查了关于x轴、y轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.4、A【分析】把分子与分母能因式分解的先进行因式分解,然后再约分即可得到答案.【详解】.故选:A.【点睛】此题主要考查了分的乘法运算,正确掌握分式的基本性质是解题的关键.5、C【分析】根据二次根式的被开方数必须大于等于0即可确定的范围.【详解】∵式子在实数范围内有意义∴解得故选:C.【点睛】本题主要考查二次根式有意义的条件,掌握二次根式有意义的条件是解题的关键.6、B【分析】先利用正方形的面积公式分别求出正方形S1、S2的边长即BC、AC的长,再利用勾股定理求斜边AB,即可得出S3.【详解】∵S1=1,∴BC2=1,∵S2=3,∴AC2=3,∴在Rt△ABC中,BC2+AC2=AB2,∴S3=AB2=1+3=4;故选:B.【点睛】此题主要考查正方形的面积公式及勾股定理的应用,熟练掌握,即可解题.7、A【分析】根据菱形的性质可知对角线平分对角,从而可知∠ABD=∠CBD=60°,从而可知△BCD是等边三角形,进而可知答案.【详解】∵∠ABC=120°,四边形ABCD是菱形∴∠CBD=60°,BC=CD∴△BCD是等边三角形∵BD=4∴BC=4故答案选A.【点睛】本题考查的是菱形的性质,能够掌握菱形的性质是解题的关键.8、D【解析】根据无理数是无限不循环小数,或者开不尽方的数,逐一进行判断即可.【详解】解:A.=2是有理数,不合题意;
B.=-2是有理数,不合题意;
C.0.101001是有理数,不合题意;
D.是无理数,符合题意.
故选D.【点睛】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,或者无限不循环小数为无理数.9、C【分析】A、根据同底数幂的除法法则:底数不变,只把指数相减,得出结果,作出判断;B、分子分母中不含有公因式,故不能约分,可得本选项错误;C、把分子利用完全平方公式分解因式,分母利用平方差公式分解因式,找出分子分母的公因式,分子分母同时除以,约分后得到最简结果,即可作出判断;D、分子分母中不含有公因式,故不能约分,可得本选项错误.【详解】解:A、,本选项错误;B、分子分母没有公因式,不能约分,本选项错误;C、,本选项正确;D、分子分母没有公因式,不能约分,本选项错误,故选:C.【点睛】本题主要考查了分式的化简,熟练掌握分式的基本性质是解题关键.10、B【分析】将一次函数与实际情况结合,能快速得出-6.5和23的实际意义.【详解】一次函数表示的是汽车行驶时间t与油箱中剩余油量的关系生活中,行驶时间越久,则剩余油量应该越少可知:-6.5表示每小时耗油6.5升,23表示出发时油箱剩余油23升故选:B.【点睛】本题考查一次函数的应用,解题关键是将函数解析式与事情情况对应起来.11、B【解析】先根据分式有意义的条件列出关于的不等式,再求出的取值范围即可.【详解】解:∵分式有意义∴∴.故选:B.【点睛】本题考查分式有意义的条件,熟知分式有意义的条件是分母不等于零是解题关键.12、D【分析】根据自驾人数及其对应的百分比可得样本容量,根据各部分百分比之和等于1可得其它m的值,用总人数乘以对应的百分比可得选择公共交通出行的人数,利用样本估计总体思想可得选择自驾方式出行的人数.【详解】A.本次抽样调查的样本容量是2000÷40%=5000,此选项正确;
B.扇形统计图中的m为1-(50%+40%)=10%,此选项正确;
C.样本中选择公共交通出行的约有5000×50%=2500(人),此选项正确;
D.若“元旦”期间到浚县观光的游客有5万人,则选择自驾方式出行的有5×40%=2(万人),此选项错误;
故选:D.【点睛】本题考查了条形统计图、扇形统计图,熟悉样本、用样本估计总体是解题的关键,另外注意学会分析图表.二、填空题(每题4分,共24分)13、y=x+3.【分析】由直线即可得到A(-6,0),B(0,8),再根据勾股定理即可得到P(0,3),利用待定系数法即可得到直线AP的表达式.【详解】令,则,令,则,由直线与轴,轴交点坐标为:A(-6,0),B(0,8),∴AO=6,BO=8,
∴,
由折叠可得AB'=AB=10,B'P=BP,
∴OB'=AB'-AO,
设P(0,),则OP=y,B'P=BP=,
∵Rt△POB'中,PO2+B'O2=B'P2,
∴y2+42=()2,
解得:,
∴P(0,3),
设直线AP的表达式为,则,,∴直线AP的表达式是.故答案为:.【点睛】本题是一次函数与几何的综合题,考查了待定系数法求解析式及折叠问题.解题时,常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.14、【分析】由已知条件,根据角平分线的性质,边AB上的高等于CD的长n,再由三角形的面积公式求得△ABD的面积.【详解】解:∵BD是∠ABC的平分线,∠C=90°,
∴点D到AB的距离为CD的长,
∴S△ABD=.
故答案为:.【点睛】本题考查了角平分线的性质和三角形面积的计算.本题比较简单,直接应用角平分线的性质进行解题,属于基础题.15、【分析】根据直角三角形内角和定理求出∠BAC,根据角平分线的定义求出∠BAE,结合图形计算即可.【详解】∵∴∵是平分线∴∵是边上的高,∴∴故答案为:.【点睛】本题考查了三角形的角度问题,掌握直角三角形内角和定理和角平分线的定义是解题的关键.16、a3【分析】根据同底数幂的除法法则进行计算即可得到答案.【详解】.故答案为a3.【点睛】本题考查了同底数幂的除法,熟练掌握运算法则是解题的关键.17、1【分析】首先设边数为n,由题意得等量关系:内角和=360°×3,根据等量关系列出方程,可解出n的值.【详解】解:设边数为n,由题意得:110(n﹣2)=360×3,解得:n=1,故答案为:1.【点睛】此题主要考查了多边形的内角与外角,关键是掌握多边形内角和与外角和定理:多边形的内角和(n﹣2)•110°(n≥3)且n为整数),多边形的外角和等于360度.18、1.【解析】试题分析:因为Rt△ABC中,∠ACB=90°,D是AB的中点,CD=2cm,所以AB="2"CD=1.考点:直角三角形斜边上的中线.三、解答题(共78分)19、(1)证明见解析(2)猜想:【解析】(1)连接BC,再利用垂直平分线的性质直接得到相应线段的相等关系;(2)由(1)得出三角形ABC是等边三角形,再推出,即可得出答案.【详解】(1)连接∵点是中点且于点∴是线段的垂直平分线∴同理∴(2)猜想:证明:由(1)得∴是等边三角形∴在中在中∵在中又∵∴∴∴【点睛】本题考查的知识点是线段垂直平分线的性质,解题的关键是熟练的掌握线段垂直平分线的性质20、(1)1;(2)【分析】(1)根据平方差公式计算即可得解;
(2)先利用乘法公式进行计算,然后合并同类项即可得解.【详解】(1)原式(2)原式.【点睛】本题考查了乘法公式和二次根式的混合运算,熟练掌握完全平方公式和平方差公式是解题关键.21、∠DAE=14°【分析】由三角形内角和定理可求得∠BAC的度数,在Rt△ADC中,可求得∠DAC的度数,AE是角平分线,有∠EAC=∠BAC,故∠EAD=∠EAC-∠DAC.【详解】解:∵在△ABC中,AE是∠BAC的平分线,且∠B=42°,∠C=70°,∴∠BAE=∠EAC=(180°-∠B-∠C)=(180°-42°-70°)=34°.在△ACD中,∠ADC=90°,∠C=70°,∴∠DAC=90°-70°=20°,∠EAD=∠EAC-∠DAC=34°-20°=14°.【点睛】本题考查了三角形内角和定理、三角形的角平分线、中线和高.求角的度数时,经常用到隐含在题中的“三角形内角和是180°”这一条件.22、作图见解析;△BCD的周长为;△BCD的面积为.【分析】根据中垂线的作法作图,设AD=x,则DC=8−x,根据勾股定理求出x的值,继而依据周长和面积公式计算可得.【详解】解:如图所示:由中垂线的性质可得AD=BD,∴△BCD的周长=BC+CD+BD=BC+CD+AD=BC+AC=6+8=14,设AD=BD=x,则DC=8−x,由勾股定理得:62+(8−x)2=x2,解得:x=,即AD=,∴CD=,∴△BCD的面积=×6×=.【点睛】此题考查了尺规作图、中垂线的性质以及勾股定理,熟练掌握尺规作图的方法是解题的关键.23、(1)见解析;(2)作图见解析,【分析】根据三角形在坐标中的位置,将每个点分别平移,即可画出平移后的图象.【详解】解:(1)、(2)如图:∴点A,B,C的坐标分别为:,,.【点睛】本题考查了平移,轴对称的知识,解题的关键是熟练掌握作图的方法.24、EC=BF,EC⊥BF,理由见解析【解析】先由条件可以得出∠EAC=∠BAE,再证明△EAC≌△BAF就可以得出结论.【详解】解:EC=BF,EC⊥BF.理由:∵AE⊥AB,AF⊥AC,∴∠EAB=∠CAF=90°,∴∠EAB+∠BAC=∠CAF+∠BAC,∴∠EAC=∠BAE.在△EAC和△BAF中,∵,∴△EAC≌△BAF(SAS),∴EC
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 各种手术的备皮范围
- 医疗服务协议及第二季度医保督导问题反馈培训会培训记录
- 《光照与园林植物》课件
- 医疗设备推广方案
- 《呼吸纵膈泌尿》课件
- 数学学案:课堂导学基本逻辑联结词
- 临床药物治疗学药物
- 《实验设计初步》课件
- 《办公室健康指南》课件
- 西药学综合知识与技能题库及答案(2201-2400题)
- YY 0569-2005生物安全柜
- juniper防火墙培训(SRX系列)
- GB/T 13610-2020天然气的组成分析气相色谱法
- 心肌梗死后综合征
- 《彩虹》教案 省赛一等奖
- FLUENT6.3使用说明及例题
- 街道火灾事故检讨
- 最新班组安全管理安全生产标准化培训课件
- 《一粒种子成长过程》的课件
- 学好语文贵在三个“多”:多读、多背、多写-浅谈语文学法指导
- 助人为乐-主题班会(课件)
评论
0/150
提交评论