中考数学几何模型专项复习 模型42 相似形-一线三等角模型-(原卷版+解析)_第1页
中考数学几何模型专项复习 模型42 相似形-一线三等角模型-(原卷版+解析)_第2页
中考数学几何模型专项复习 模型42 相似形-一线三等角模型-(原卷版+解析)_第3页
中考数学几何模型专项复习 模型42 相似形-一线三等角模型-(原卷版+解析)_第4页
中考数学几何模型专项复习 模型42 相似形-一线三等角模型-(原卷版+解析)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

相似形模型(四十二)——一线三等角模型一线三等角:三个相等的角的顶点在一条直线上◎结论1:如图∠A=∠DBE=∠C,则①△ADB∽△CBE;②AD×EC(竖着的)=AB×BC(躺着的)外角:∠DBC=∠A+∠ADB∠DBE+∠EBC=∠A+∠ADB,外角:∠DBC=∠A+∠ADB∠DBE+∠EBC=∠A+∠ADB,∠EBC=∠ADB。同理:∠DBA=∠BEC,∴△ADB∽△CBE∴ADCB=改为乘积式:AD.CE=AB.BC一线三等角经典结论:左乘右=左乘右◎结论2:如图∠A=∠DBE=∠C,B点是AC的中点,证明:△ABD∽△CEB∴证明:△ABD∽△CEB∴ABCE=ADCB=BDEB,∵AB=BC∴ADAB=又∵∠DAB=∠DBE∴△DAB∽△DBE∴∠ADB=∠BDE△ABD,△BED,△CEB均相似BD,BE为∠ADE,∠DEC角平分线③DB、EB平分∠ADE和∠DEC模型图解常见图形:一线三等角模型应用的四种情况:1.图形中已经存在“一线三等角”,直接应用模型解题;2.图形中存在“一线二等角”,再构造“一个等角”,利用模型解题;3.图形中只有直线上一个角,再构造“两个等角”,利用模型解题;4.图形中只有45°角,直角或直角三角形,可构造“一线三等(直)角”,利用模型解题。1.(2023·重庆渝北·九年级期末)如图,在等边三角形中,点,分别是边,上的点.将沿翻折,点正好落在线段上的点处,使得.若,则的长度为(

)A. B. C. D.2.(2023·全国·九年级专题练习)如图,在矩形中,,,、、、分别为矩形边上的点,过矩形的中心,且.为的中点,为的中点,则四边形的周长为(

)A. B. C. D.1.(2023·江苏扬州·九年级期末)如图,在边长为6的等边△ABC中,D是边BC上一点,将△ABC沿EF折叠使点A与点D重合,若BD:DE=2:3,则CF=____.2.(2023·安徽·淮北市烈山区淮选学校九年级阶段练习)如图,在四边形ABCD中,∠A=∠D=120°,AB=6、AD=4,点E、F分别在线段AD、DC上(点E与点A、D不重合),若∠BEF=120°,AE=x、DF=y,则y关于x的函数关系式为________3(2023·吉林·长春市绿园区教师进修学校九年级期末)【感知】如图①,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),.易证.(不需要证明)【探究】如图②,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),.若,,,求AP的长.【拓展】如图③,在中,,,点P在边AB上(点P不与点A、B重合),连结CP,作,PE与边BC交于点E,当是等腰三角形时,直接写出AP的长.1.(2023·河南郑州·二模)如图,已知矩形的顶点分别落在轴轴上,,AB=2BC则点的坐标是(

)A. B. C. D.2.(2023·海南省直辖县级单位·模拟预测)如图,将正方形纸片ABCD沿EF折叠,折痕为EF,点A的对应点是点A′,点B的对应点是点B′,点B′落在边CD上,若CB′:CD=1:3,且BF=10,则EF的长为()A. B. C. D.3.(2023·湖北襄阳·一模)如图,为等边三角形,点D,E分别在边AB,AC上,,将沿直线DE翻折得到,当点F落在边BC上,且时,的值为______.4.(2023·山东菏泽·三模)(1)问题如图1,在四边形ABCD中,点P为AB上一点,当时,求证:.(2)探究若将90°角改为锐角或钝角(如图2),其他条件不变,上述结论还成立吗?说明理由.(3)应用如图3,在中,,,以点A为直角顶点作等腰.点D在BC上,点E在AC上,点F在BC上,且,若,求CD的长.相似形模型(四十二)——一线三等角模型一线三等角:三个相等的角的顶点在一条直线上◎结论1:如图∠A=∠DBE=∠C,则①△ADB∽△CBE;②AD×EC(竖着的)=AB×BC(躺着的)外角:∠DBC=∠A+∠ADB∠DBE+∠EBC=∠A+∠ADB,外角:∠DBC=∠A+∠ADB∠DBE+∠EBC=∠A+∠ADB,∠EBC=∠ADB。同理:∠DBA=∠BEC,∴△ADB∽△CBE∴ADCB=改为乘积式:AD.CE=AB.BC一线三等角经典结论:左乘右=左乘右◎结论2:如图∠A=∠DBE=∠C,B点是AC的中点,证明:△ABD∽△CEB∴证明:△ABD∽△CEB∴ABCE=ADCB=BDEB,∵AB=BC∴ADAB=又∵∠DAB=∠DBE∴△DAB∽△DBE∴∠ADB=∠BDE△ABD,△BED,△CEB均相似BD,BE为∠ADE,∠DEC角平分线③DB、EB平分∠ADE和∠DEC模型图解常见图形:一线三等角模型应用的四种情况:1.图形中已经存在“一线三等角”,直接应用模型解题;2.图形中存在“一线二等角”,再构造“一个等角”,利用模型解题;3.图形中只有直线上一个角,再构造“两个等角”,利用模型解题;4.图形中只有45°角,直角或直角三角形,可构造“一线三等(直)角”,利用模型解题。1.(2023·重庆渝北·九年级期末)如图,在等边三角形中,点,分别是边,上的点.将沿翻折,点正好落在线段上的点处,使得.若,则的长度为(

)A. B. C. D.答案:A分析由是等边三角形,===60°,由沿DE折叠C落在AB边上的点F上,,==60°,CD=DF,CE=EF,由AF:BF=1:2,设AF=m,BF=2m,AB=3m,设AD=x,CD=DF=,由BE=2,BC=,可得CE=,可证,利用性质,即,解方程即可【详解】解:∵是等边三角形,∴===60°,∵沿DE折叠C落在AB边上的点F上,∴,∴==60°,CD=DF,CE=EF,∵AF:BF=1:2,设AF=m,BF=2m,AB=3m,设=x,=DF=,∵BE=2,BC=,∴CE=,∵=,=60°,∴=120°,=120°,∴=,∵=,∴,∴,即,解得:,使等式有意义,∴=,故选择:A.【点睛】本题考查等边三角形性质和折叠性质以及相似三角形的性质和判定,主要考查学生运用定理进行推理和计算的能力,题目综合性比较强,有一定的难度.2.(2023·全国·九年级专题练习)如图,在矩形中,,,、、、分别为矩形边上的点,过矩形的中心,且.为的中点,为的中点,则四边形的周长为(

)A. B. C. D.答案:B分析连接,证明四边形是矩形,再证明,求得与的长度,由勾股定理求得与,再由矩形的周长公式求得结果.【详解】解:连接,四边形是矩形,,,为的中点,为的中点,,,四边形是平行四边形,,矩形是中心对称图形,过矩形的中心.过点,且,,四边形是平行四边形,,四边形是矩形,,,,,,,设,则,,,解得,或4,或4,当时,,则,,四边形的周长;同理,当时,四边形的周长;故选:.【点睛】本题主要考查了矩形的性质,相似三角形的性质与判定,勾股定理,关键在于证明四边形是矩形.1.(2023·江苏扬州·九年级期末)如图,在边长为6的等边△ABC中,D是边BC上一点,将△ABC沿EF折叠使点A与点D重合,若BD:DE=2:3,则CF=____.答案:2.4分析根据折叠的性质可得∠EDF=∠A,DF=AF,再由等边三角形的性质可得∠EDF=60°,∠BDE+∠CDF=∠BDE+∠BED=120°,从而得到∠CDF=∠BED,进而得到△BDE∽△CFD,再由BD:DE=2:3,可得到,即,即可求解.【详解】解:根据题意得:∠EDF=∠A,DF=AF,∵△ABC是等边三角形,∴∠A=∠B=∠C=60°,∴∠EDF=60°,∴∠BDE+∠CDF=180°-∠EDF=120°,∵∠B=60°,∴∠BDE+∠BED=180°-∠B=120°,∴∠BDE+∠CDF=∠BDE+∠BED,∴∠CDF=∠BED,∴△BDE∽△CFD,∴,即,∵等边△ABC的边长为6,∴,解得:.故答案为:2.4【点睛】本题主要考查了等边三角形的性质,图形的折叠,相似三角形的判定和性质,熟练掌握等边三角形的性质,图形的折叠的性质,相似三角形的判定和性质是解题的关键.2.(2023·安徽·淮北市烈山区淮选学校九年级阶段练习)如图,在四边形ABCD中,∠A=∠D=120°,AB=6、AD=4,点E、F分别在线段AD、DC上(点E与点A、D不重合),若∠BEF=120°,AE=x、DF=y,则y关于x的函数关系式为________答案:分析根据题意证明,列出比例式即可求得y关于x的函数关系式【详解】解:∠A=∠D=120°,∠BEF=120°,AB=6、AD=4,AE=x、DF=y,即故答案为:【点睛】本题考查了相似三角形的性质与判定,函数解析式,掌握相似三角形的性质与判定是解题的关键.3(2023·吉林·长春市绿园区教师进修学校九年级期末)【感知】如图①,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),.易证.(不需要证明)【探究】如图②,在四边形ABCD中,点P在边AB上(点P不与点A、B重合),.若,,,求AP的长.【拓展】如图③,在中,,,点P在边AB上(点P不与点A、B重合),连结CP,作,PE与边BC交于点E,当是等腰三角形时,直接写出AP的长.答案:【探究】3;【拓展】4或.分析探究:根据相似三角形的性质列出比例式,计算即可;拓展:证明△ACP∽△BPE,分CP=CE、PC=PE、EC=EP三种情况,根据相似三角形的性质计算即可.【详解】探究:证明:∵是的外角,∴,即,∵,∴,又∵,∴,∴,∵,,,∴,解得:;拓展:∵AC=BC,∴∠A=∠B,∵∠CPB是△APC的外角,∴∠CPB=∠A+∠PCA,即∠CPE+∠EPB=∠A+∠PCA,∵∠A=∠CPE,∴∠ACP=∠BPE,∵∠A=∠B,∴△ACP∽△BPE,当CP=CE时,∠CPE=∠CEP,∵∠CEP>∠B,∠CPE=∠A=∠B,∴CP=CE不成立;当PC=PE时,△ACP≌△BPE,则PB=AC=8,∴AP=AB-PB=128=4;当EC=EP时,∠CPE=∠ECP,∵∠B=∠CPE,∴∠ECP=∠B,∴PC=PB,∵△ACP∽△BPE,∴,即,解得:,∴AP=ABPB=,综上所述:△CPE是等腰三角形时,AP的长为4或.【点睛】本题考查的是相似三角形的判定和性质、等腰三角形的性质、三角形的外角性质,灵活运用分情况讨论思想是解题的关键.1.(2023·河南郑州·二模)如图,已知矩形的顶点分别落在轴轴上,,AB=2BC则点的坐标是(

)A. B. C. D.答案:D分析过C作CE⊥x轴于E,根据矩形的性质得到CD=AB,∠ABC=90°,,根据余角的性质得到∠BCE=∠ABO,进而得出△BCE∽△ABO,根据相似三角形的性质得到结论.【详解】解:过C作CE⊥x轴于E,∵四边形ABCD是矩形,∴CD=AB,∠ABC=90°,∴∠ABO+∠CBE=∠CBE+∠BCE=90°,∴∠BCE=∠ABO,∵,∴△BCE∽△ABO,∴,∵∴AB=,∵AB=2BC,∴BC=AB=4,∵,∴CE=2,BE=2∴OE=4+2∴C(4+2,2),故选:D.【点睛】本题考查了矩形的性质,相似三角形的判定和性质,坐标与图形性质,正确的作出辅助线是解题的关键.2.(2023·海南省直辖县级单位·模拟预测)如图,将正方形纸片ABCD沿EF折叠,折痕为EF,点A的对应点是点A′,点B的对应点是点B′,点B′落在边CD上,若CB′:CD=1:3,且BF=10,则EF的长为()A. B. C. D.答案:C分析设,则CD=3x,,根据求出x=6,得到CD=18,CF=8,=12,证明△∽△求得DM=9,,,AM=9,再根据求得AE=4,过点E作EH⊥BC于H,则四边形ABHE是矩形,再根据勾股定理求出EF=.【详解】设,则CD=3x,,由折叠得,∴CF=3x-10,∵∴100=,解得x=6或x=0(舍去),∴CD=18,CF=8,=12,∵∠C=∠D=∠,∴∠,∴△∽△,∴,∴,∴DM=9,,∴,AM=9,在Rt△中,,∴,解得EM=5,∴AE=4,过点E作EH⊥BC于H,则四边形ABHE是矩形,∴BH=AE=4,EH=AB=CD=18,∴FH=10-4=6,∴EF=,故选:C.【点睛】此题考查正方形的性质,勾股定理,折叠的性质,相似三角形的判定及性质,矩形的判定及性质,解题中多次用到勾股定理求出直角三角形中的边长,根据折叠的性质得到对应的边相等或角度相等是解题的关键.3.(2023·湖北襄阳·一模)如图,为等边三角形,点D,E分别在边AB,AC上,,将沿直线DE翻折得到,当点F落在边BC上,且时,的值为______.答案:分析根据△ABC为等边三角形,△ADE与△FDE关于DE成轴对称,可证△BDF∽△CFE,根据BF=4CF,可得CF=4,根据AF为轴对称图形对应点的连线,DE为对称轴,可得DE⊥AF,根据S四边形ADFE==S△CEF=-S△ABC-S△CEF,进而可求.【详解】解:如图,作△ABC的高AL,作△BDF的高DH,∵△ABC为等边三角形,△ADE与△FDE关于DE成轴对称,∴∠DFE=∠DAE=60°,AD=DF,∴∠CFE+∠FEC=∠CFE+∠DFB=120°,∴∠DFB=∠CEF,又∠B=∠C=60°,∴△BDF∽△CFE,∴,即,设CF=x(x>0),∵BF=4CF,∴BF=4x,∵BD=3,∴,∵,∴,,∵△BDF∽△CFE,∴,∴解得:x=2,∴CF=4,∴BC=5x=10,∵在Rt△ABL中,∠B=60°,∴AL=ABsin60°=10×=5,∴S△ABC=,∵在Rt△BHD中,BD=3,∠B=60°,∴DH=BDsin60°=,∴S△BDF=,∵△BDF∽△CFE,∴,∵S△BDF=,∴S△CEF=,又∵AF为轴对称图形对应点的连线,DE为对称轴,∴AD=DF,△ADF为等腰三角形,DE⊥AF,∴S四边形ADFE=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论