版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Unit6DigitalImageProcessing6.1ComponentsofanImageProcessingSystem
6.2ExamplesofFieldsThatUseDigitalImageProcessing
6.3IntroductiontoPatternRecognition6.1ComponentsofAnImageProcessingSystemWordsandExpressionsBackgroundsText4peripheraldevice 外部设备;外围设备graphicsprocessingunits(GPU) 图形处理单元Designedforparallelprocessing,theGPUisusedinawiderangeofapplications,includinggraphicsandvideorendering.Althoughthey’rebestknownfortheircapabilitiesingaming,GPUsarebecomingmorepopularforuseincreativeproductionandartificialintelligence(AI).deepconvolutionalnetwork 深度卷积网络WordsandExpressionsTypicalCNNarchitecture5词汇拓展TPU:TensorProcessingUnit,an
AIaccelerator
application-specificintegratedcircuit
(ASIC)developedby
for
neuralnetwork
machinelearning,usingGoogle'sown
TensorFlow
software.DPU:DataProcessingUnit,a
channelcontroller,aprogrammablespecialized
electroniccircuit
with
hardwareacceleration
of
dataprocessing
for
data-centriccomputing. WordsandExpressionsTensorProcessingUnit3.0designedbyGooglein2016WordsandExpressionssensor n.传感器digitizer n.数字化仪;数字化器arithmeticlogicunit(ALU)算术逻辑单元6WordsandExpressionsframe n.帧buffer n.缓存器;缓冲器;缓存区magnetic adj.磁的,有磁性的stereo adj.立体的;立体声的7Diagramdescribingrelationshipofimagedisplacementtodepthwithstereoscopicimages,assumingflatco-planarimagesComputerstereovision
istheextractionof3Dinformationfromdigitalimages,suchasthoseobtainedbya
CCDcamera.
WordsandExpressionsresolution n.分辨率projection n.投影bandwidth n.带宽8Anillustrationofhowthesameimagemightappearatdifferentpixelresolutions,ifthepixelswerepoorlyrenderedassharpsquares.CameraprojectionmodelBackgroundsDigitalImageProcessing,4thedition,byR.C.andWoods,R.E9TextbookaboutDIPBackgrounds10StanfordEE368/CS232:DigitalImageProcessing/class/ee368/index.htmlTextOutlineComponentsofanimageprocessingsystemThedevelopmentofdigitalimageprocessingComponentsofimageprocessingsystem11Componentsofageneral-purposeimageprocessingsystem.ThedevelopmentofdigitalimageprocessingInthelate1990sandearly2000s,anewclassofadd-onboards,calledgraphicsprocessingunits(GPU)wereintroducedforworkon3Dapplications,suchasgamesandother3Dgraphicsapplications.在20世纪90年代末和21世纪初,一种称为图形处理单元(GPU)的新型附加板被引入3D应用,如游戏和其他3D图形应用。12ThedevelopmentofdigitalimageprocessingItwasnotlongbeforeGPUsfoundtheirwayintoimageprocessingapplicationsinvolvinglarge-scalematriximplementations,suchastrainingdeepconvolutionalnetworks.没过多久,GPU就进入了涉及大规模矩阵实现的图像处理应用,例如训练深度卷积网络。13AMD2022-2024GPURoadmapThedevelopmentofdigitalimageprocessingInadditiontoloweringcosts,themarketshift
fromsubstantialperipheraldevicestoadd-onprocessingboardsalsoservedasacatalystforasignificantnumberofnewcompaniesspecializinginthedevelopmentofsoftwarewrittenspecificallyforimageprocessing.除了降低成本外,市场从大量外围设备向附加处理板的转变也催生出大量专门开发专用于图像处理软件的新公司。14ComponentsofanimageprocessingsystemSpecializedimageprocessinghardwareusuallyconsistsofthedigitizerjustmentioned,plushardwarethatperformsotherprimitiveoperations,suchasanarithmeticlogicunit(ALU),thatperformsarithmeticandlogicaloperationsinparallelonentireimages.专门的图像处理硬件通常包括刚才提到的数字化仪,以及执行其他基本操作的硬件,例如算术逻辑单元(ALU),它在整个图像上并行执行算术和逻辑操作。15ComponentsofanimageprocessingsystemInotherwords,thisunitperformsfunctionsthatrequirefastdatathroughputs(e.g.,digitizingandaveragingvideoimagesat30frames/s)thatthetypicalmaincomputercannothandle.OneormoreGPUs(seeabove)alsoarecommoninimageprocessingsystemsthatperformintensivematrixoperations.换句话说,该单元执行的功能需要快速的数据吞吐量(例如,以30帧/秒的速度对视频图像进行数字化和平均化),而典型的主计算机无法处理这些功能。一个或多个GPU(见上文)在执行密集矩阵运算的图像处理系统中也是常见的。16ComponentsofanimageprocessingsystemWhendealingwithimagedatabasesthatcontainthousands,orevenmillions,ofimages,providingadequatestorageinanimageprocessingsystemcanbeachallenge.在处理包含数千甚至数百万图像的图像数据库时,在图像处理系统中提供足够的存储空间可能是一个挑战。17ComponentsofanimageprocessingsystemInsomecases,itisnecessarytohavestereodisplays,andtheseareimplementedintheformofheadgearcontainingtwosmalldisplaysembeddedingoggleswornbytheuser.在某些情况下,需要有立体显示器,这些显示器以头盔的形式实现,其中包含嵌入用户佩戴的护目镜中的两个小显示器。18Becauseofthelargeamountofdatainherentinimageprocessingapplications,thekeyconsiderationinimagetransmissionisbandwidth.由于图像处理应用中固有的大量数据,图像传输的关键考虑因素是带宽。19Componentsofanimageprocessingsystem6.2ExamplesofFieldsThatUseDigitalImageProcessingWordsandExpressionsBackgroundsTextWordsandExpressionsinfrared adj.红外线的;使用红外线的
n.红外线;红外区acoustic adj.声音的,听觉的ultrasonic adj.超声的Approximatefrequencyrangescorrespondingtoultrasound,withroughguideofsomeapplicationsUltrasoundimage(sonogram)ofafetusinthewomb,viewedat12weeksofpregnancy(bidimensionalscan)WordsandExpressionselectronmicroscopy 电子显微术;电子显微镜学;电子显微法syntheticimage 合成的图像visualization n.可视化Syntheticimagesarecomputergeneratedimageswhichrepresenttherealworld.RealimageandSyntheticimageWordsandExpressionsDatavisualization 数据可视化Datavisualizationis
thepracticeoftranslatinginformationintoavisualcontext,suchasamaporgraph,tomakedataeasierforthehumanbraintounderstandandpullinsightsfrom.Themaingoalofdatavisualizationistomakeiteasiertoidentifypatterns,trendsandoutliersinlargedatasets..WordsandExpressionsradiation n.辐射spectrum n.频谱electromagneticwave 电磁波wavelength n.波长Electromagneticspectrum
withvisiblelighthighlightedWordsandExpressionsphoton n.光子spectral adj.谱的,光谱的imaging n.成像Medicalimaging
isthetechniqueandprocessof
imaging
theinteriorofabodyforclinicalanalysisandmedicalintervention,aswellasvisualrepresentationofthefunctionofsomeorgansortissues.Plainx-rayofthewristandhandOneframeofa
CTscan
ofthechestshowingtheheartandlungs.OneframeofanMRIscanoftheheadshowingtheeyesandbrain.WordsandExpressionsremotesensing 遥感microwave n.微波Microwave
isaformof
electromagneticradiation
with
wavelengths
rangingfromaboutonemetertoonemillimetercorrespondingto
frequencies
between300
MHzand300
GHzrespectively.IllustrationofremotesensingDeeplearninginremotesensingWordsandExpressionssnapshot n.快照lens n.透镜,镜片antenna n.天线magneticresonanceimaging(MRI) 磁共振成像Xband
marineradar
slotantenna
onship,8–12
GHz.Para-sagittal
MRIofthehead,with
aliasing
artifacts
(noseandforeheadappearatthebackofthehead)Backgrounds28NorthwesternUniversity数字图像和视频处理基础/learn/digitalTextOutline29ExamplesoffieldsthatusedigitalimageprocessingGamma-RayImagingX-RayImagingImagingintheUltravioletBandImagingintheVisibleandInfraredBandsImagingintheMicrowaveBandImagingintheRadioWaveBandOtherImagingModalitiesTheelectromagneticspectrumarrangedaccordingtoenergyperphoton.ExamplesoffieldsthatusedigitalimageprocessingToday,thereisalmostnoareaoftechnicalendeavorthatisnotimpactedinsomewaybydigitalimageprocessing.Wecancoveronlyafewoftheseapplicationsinthecontextandspaceofthecurrent.如今,几乎没有任何一个技术领域不受数字图像处理的影响。在当前讨论的上下文和领域中,我们只能介绍其中的部分应用。30ExamplesoffieldsthatusedigitalimageprocessingOneofthesimplestwaystodevelopabasicunderstandingoftheextentofimageprocessingapplicationsistocategorizeimagesaccordingtotheirsource(e.g.,X-ray,visual,infrared,andsoon).要基本了解图像处理应用程序的范围,最简单的方法之一是根据图像的来源(例如,X射线、可见光、红外线等)对图像进行分类。31Real-timeMRIofa
humanheart
ataresolutionof50
msElectromagneticwavescanbeconceptualizedaspropagatingsinusoidalwavesofvaryingwavelengths,ortheycanbethoughtofasastreamofmasslessparticles,eachtravelinginawavelikepatternandmovingatthespeedoflight.电磁波可以被概念化为传播波长不同的正弦波,也可以被认为是无质量粒子流,每个粒子以波的形式传播,并以光速移动。32ExamplesoffieldsthatusedigitalimageprocessingTheinfraredbandoftenisusedinconjunctionwithvisualimaging,sowehavegroupedthevisibleandinfraredbandsinthissectionforthepurposeofillustration.红外波段通常与视觉成像结合使用,因此为了便于说明,我们在这部分中将可见光和红外波段合并为一组。33ExamplesoffieldsthatusedigitalimageprocessingVisiblelightandinfraredimagesExamplesoflightmicroscopyimages.(a)Taxol(anticanceragent),magnified250×.(b)Cholesterol—40×.(c)Microprocessor—60×.(d)Nickeloxidethinfilm—600×.(e)SurfaceofaudioCD—1750×.(f)Organicsuperconductor—450×.34Examplesoffieldsthatusedigitalimageprocessing(a)(b)(c)(d)(e)(f)Theuniquefeatureofimagingradarisitsabilitytocollectdataovervirtuallyanyregionatanytime,regardlessofweatherorambientlightingconditions.成像雷达的独特之处在于,它能够在任何时间收集几乎任何地区的数据,而不管天气或环境照明条件如何。35Examplesoffieldsthatusedigitalimageprocessing913×913satelliteimageofHurricaneAndrewRadarimageAnimagingradarworkslikeaflashcamerainthatitprovidesitsownillumination(microwavepulses)toilluminateanareaonthegroundandtakeasnapshotimage.Insteadofacameralens,aradarusesanantennaanddigitalcomputerprocessingtorecorditsimages.Inaradarimage,onecanseeonlythemicrowaveenergythatwasreflectedbacktowardtheradarantenna.成像雷达的工作原理就像闪光灯一样,它提供自己的照明(微波脉冲)来照亮地面上的区域并拍摄快照图像。雷达使用天线和数字计算机处理来记录图像,而不是相机镜头。在雷达图像中,人们只能看到反射回雷达天线的微波能量。36ExamplesoffieldsthatusedigitalimageprocessingAlthoughimagingintheelectromagneticspectrumisdominantbyfar,thereareanumberofotherimagingmodalitiesthatarealsoimportant,includingacousticimaging,electronmicroscopy,andsynthetic(computer-generated)imaging.尽管电磁频谱成像目前占主导地位,但还有许多其他成像方式也很重要,包括声学成像、电子显微镜成像和合成(计算机生成)成像。37Examplesoffieldsthatusedigitalimageprocessing6.3IntroductiontoPatternRecognitionWordsandExpressionsBackgroundsTextWordsandExpressionspatternrecognition模式识别Patternrecognitionistheabilityofmachinestoidentifypatternsindata,andthenusethosepatternstomakedecisionsorpredictions.spatial adj.空间的PatternRecognitiontosolvethecomputervisiontaskObjectDetection.Examplesofpatterns:Soundwave,treespecies,fingerprint,face,barcode,QR-code,handwriting,orcharacterimage.WordsandExpressionsfeatureextraction特征提取classification n.分类Theobjectstobeclassifiedarefirstsensedbyatransducer(camera),whosesignalsarepreprocessed,thenthefeaturesextractedandfinallytheclassificationemitted(hereeither“salmon”or“seabass”).WordsandExpressionsnoisereduction 降噪Noiseisdefinedasverygeneralterms:anypropertyofthesensedpatternduenottothetrueunderlyingmodelbutinsteadtorandomnessintheworldorthesensors.Allnon-trivialdecisionandpatternrecognitionproblemsinvolvenoiseinsomeform.Insomecasesitisduetothetransductioninthesignalandwemayconsigntoourpreprocessortheroleofcleaningupthesignal.WordsandExpressionsenhancement n.增强restoration n.复原segmentation n.分割Digitalphotographrestoration
and
colorization
using
artificialintelligenceImageenhancementImagesegmentationwithdeeplearningWordsandExpressionslabel n.标签prototype n.原型optimumstatisticalclassifier 最优统计分类器In
statistics,
classification
istheproblemofidentifyingwhichofasetof
categories
(sub-populations)an
observation
(orobservations)belongsto.
ImagelabellingWordsandExpressionsneuralnetwork神经网络Convolutionalneuralnetwork卷积神经网络rawdata 原始数据WordsandExpressionscharacterrecognition字符识别Simplifiedviewofa
feedforward
artificialneuralnetworkSceneTextRecognition(STR)forroadsignreadingWordsandExpressionsunlabeleddata 未标记的数据cluster n.群,组Theresultofaclusteranalysisshownasthecoloringofthesquaresintothreeclusters.k-meansseparatesdataintoVoronoicells,whichassumesequal-sizedclusters(notadequatehere)WordsandExpressionstrainingset训练集validationset验证集testset测试集In
machinelearning,acommontaskisthestudyandconstructionof
algorithms
thatcanlearnfromandmakepredictionson
data.Suchalgorithmsfunctionbymakingdata-drivenpredictionsordecisions,
throughbuildinga
mathematicalmodel
frominputdata.
Threedatasetsarecommonlyusedindifferentstagesofthecreationofthemodel:training,validationandtestsets.Themodelisinitiallyfitona
trainingdataset,
whichisasetofexamplesusedtofittheparameters.Successively,thefittedmodelisusedtopredicttheresponsesfortheobservationsinaseconddatasetcalledthe
validationdataset.Finally,the
testdataset
isadatasetusedtoprovideanunbiasedevaluationofa
final
modelfitonthetrainingdataset.WordsandExpressionsiteration n.迭代supervisedlearning 有监督学习Supervisedlearning(SL)
isa
machinelearning
paradigmforproblemswheretheavailabledataconsistsoflabelledexamples,meaningthateachdatapointcontainsfeatures(covariates)andanassociatedlabel.unsupervisedlearning 无监督学习Unsupervisedlearning
isa
machinelearning
paradigmforproblemswheretheavailabledataconsistsofunlabelledexamples,meaningthateachdatapointcontainsfeatures(covariates)only,withoutanassociatedlabel.
BackgroundsRelatedAreasofImageProcessing:DigitalImageProcessing:BerndGirod,©2013-2015StanfordUniversity--Introduction21BackgroundsPatternRecognitionForMachineVision/courses/9-913-pattern-recognition-for-machine-vision-fall-2004/PatternRecognitionAndAnalysis/courses/mas-622j-pattern-recognition-and-analysis-fall-2006/50BackgroundsMachineVision/courses/6-801-machine-vision-fall-2020/51TextIntroductiontopatternrecognitionIntroductiontopatternrecognitionMainstagesinpatternrecognitionBasicapproachesusedforimagepatternrecognition52Introductiontopatternrecognition53Imaginewhatmodernlifewouldbelikewithoutmachinesthatreadbarcodes,processbankchecks,inspectthequalityofmanufacturedproducts,readfingerprints,sortmail,andrecognizespeech.想象一下,如果没有读取条形码、处理银行支票、检查制成品质量、读取指纹、分拣邮件和识别语音的机器,现代生活会是什么样子。Introductiontopatternrecognition54Thatis,givenapatternorsetsofpatternswhoseclassisunknown,thejobofapatternrecognitionsystemistoassignaclasslabeltoeachofitsinputpatterns.也就是说,给定一个或多个类别未知的模式,模式识别系统的工作就是为其每个输入模式分配一个类别标签。55Therearefourmainstagesinvolvedinrecognition:(1)sensing,(2)preprocessing,(3)featureextraction,and(4)classification.Intermsofimageprocessing,sensingisconcernedwithgeneratingsignalsinaspatial(2D)orhigher-dimensionalformat.Preprocessingdealswithtechniquesfortaskssuchasnoisereduction,enhancement,restoration,andsegmentation.Classificationdealswithusingasetoffeaturesasthebasisforassigningclasslabelstounknowninputimagepatterns.识别涉及四个主要阶段:(1)感知,(2)预处理,(3)特征提取和(4)分类。在图像处理方面,感知是以空间(2D)或更高维格式生成信号。预处理包括了降噪、增强、恢复和分割等任务的技术。分类是指应用一组特征作为将类标签分配给未知输入图像模式的基础。Mainstagesinpatternrecognition56Inthefollowingsection,wewilldiscussthreebasicapproachesusedforimagepatternclassification:(1)classificationbasedonmatchingunknownpatternsagainstspecifiedprototypes,(2)optimumstatisticalclassifiers,and(3)neuralnetworks.在下面的部分中,我们将讨论用于图像模式分类的3种基本方法:(1)根据指定原型匹配未知模式的分类方法;(2)最佳统计分类方法;(3)神经网络方法。Basicapproachesusedforimagepatternrecognition57Labeleddata:Labeleddata
isagroupof
samples
thathavebeentaggedwithoneormorelabels.Labelingtypicallytakesasetofunlabeleddataandaugmentseachpieceofitwithinformativetags.Forexample,adatalabelmightindicatewhetheraphotocontainsahorseoracow,whichwordswereutteredinanaudiorecording,whattypeofactionisbeingperformedinavideo,whatthetopicofanewsarticleis,whattheoverallsentimentofatweetis,orwhetheradotinanX-rayisatumor.Basicapproachesusedforimagepatternrecognition58Labeldata:Basicapproachesusedforimagepatternrecognition59Unlabeleddata:Unlabeleddatais
adesignationforpiecesofdatathathavenotbeentaggedwithlabelsidentifyingcharacteristics,propertiesorclassifications.Unlabeleddataistypicallyusedinvariousformsofmachinelearning.Basicapproachesusedforimagepatternrecognition60Aclassicexampleoflabeleddataisthecharacterrecognitionproblem,inwhichasetofcharactersamplesiscollectedandtheidentityofeachcharacterisrecordedasalabelfromthegroup0through9andathroughz.有标签数据的一个典型示例是字符识别问题,在该问题中,收集一组字符样本,并将每个字符的标识记录为一组0到9及a到z的标签。Basicapproachesusedforimagepatternrecognition61Anexampleofunlabeleddataiswhenweareseekingclustersinadataset,withtheaimofutilizingtheresultingclustercentersasbeingprototypesofthepatternclassescontainedinthedata.无标签数据的一个例子是,当我们在某数据集中寻找聚类时,目标是利用由此产生的聚类中心作为数据中包含的模式类的原型。BasicapproachesusedforimagepatternrecognitionBasicapproachesusedforimagepatternrecognition62Whenworkingwithalabeleddata,agivendatasetgenerallyissubdividedintothreesubsets:atrainingset,avalidationset,andatestset(atypicalsubdivisionmightbe50%training,and25%eachforthevalidationandtestsets).当使用有标签数据时,给定的数据集通常被细分为三个子集:训练集、验证集和测试集(典型的细分可能是50%的训练,验证集和试验集各25%)。Basicapproachesusedforimagepatternrecognition63Inthismode,aclassifierisgiventheclasslabelofeachpattern,theobjectivebeingtomakeadjustmentsintheparametersiftheclassifiermakesamistakeinidentifyingtheclassofthegivenpattern.在这种模式下,分类器得到每个模式的类别标签,目的是如果分类器在识别给定模式的类型时出错,则对参数进行调整。64Iftraining/validationresultsareacceptable,buttestresultsarenot,wesaythattraining/validation“overfit”thesystemparameterstotheavailabledata,inwhichcasefurtherworkonthesystemarchitectureisrequired.如果训练/验证结果是可接受的,但测试结果不是,我们说训练/验证使系统参数“过拟合”了可用数据,在这种情况下,需要对系统架构进行进一步的工作。Basicapproachesusedforimagepatternrecognition65Overfitting:In
mathematicalmodeling,
overfitting
is"theproductionofananalysisthatcorrespondstoocloselyorexactlytoaparticularsetofdata,andmaythereforefailtofittoadditionaldataorpredictfutureobservationsreliably".
An
overfittedmodel
isa
mathematicalmodel
thatcontainsmore
parameters
thancanbejustifiedbythedata.
Theessenceofoverfittingistohaveunknowinglyextractedsomeoftheresidualvariation(i.e.,the
noise)asifthatvariationrepresentedunderlyingmodelstructure.BasicapproachesusedforimagepatternrecognitionThegreenlinerepresentsanoverfittedmodelandtheblacklinerepresentsaregularizedmodel.Whilethegreenlinebestfollowsthetrainingdata,itistoodependentonthatdataanditislikelytohaveahighererrorrateonnewunseendata,comparedtotheblacklin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 成语英文翻译
- 政府公开招标合同实例
- 安全活动协议范本
- 服装设计版权共享协议
- 建筑用工协议
- 2024年农场种植土地租赁合同
- 人才招聘委托协议
- 住房抵押担保借款合同的样本版
- 【初中地理】《影响气候的主要因素和气候的影响》教学课件-2024-2025学年人教版地理七年级上册
- 共同购房合作协议书范本
- 银行转账截图生成器制作你想要的转账截图
- 2022年版 义务教育《数学》课程标准
- 家长会课件:小学一年级家长会语文老师课件
- 成人住院患者静脉血栓栓塞症Caprini、Padua风险评估量表
- 小学团委支部工作计划
- 小班安全我要跟着老师走
- 外事实务智慧树知到期末考试答案2024年
- 中考道德与法治复习策略指导
- 人工智能儿童科普
- 产品经济性设计与分析报告
- 基于核心素养初中数学跨学科教学融合策略
评论
0/150
提交评论