




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022-2023学年湖北省武汉市晒湖中学高二数学理期末试卷含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.在平面直角坐标系xOy中,已知双曲线的左焦点为F,点B的坐标为,若直线BF与双曲线C的两条渐近线分别交于P,Q两点,且,则双曲线C的离心率为(
)A. B. C. D.2参考答案:B【分析】根据焦点和得到直线方程,与双曲线两条渐近线方程联立可求得坐标,利用向量关系可得到的齐次方程,从而求得离心率.【详解】如图所示:左焦点为,点的坐标为直线为:直线与双曲线渐近线联立得:;直线与双曲线渐近线联立得:,则:整理可得:
本题正确选项:【点睛】本题考查双曲线离心率的求解,关键是能够根据向量关系构造出关于的齐次方程,从而得到离心率.2.已知等差数列{an}和等比数列{bn},它们的首项是一个相等的正数,且第3项也是相等的正数,则a2与b2的大小关系为(
)A.a2≤b2 B.a2≥b2 C.a2<b2 D.a2>b2参考答案:B【考点】等比数列的性质;等差数列的性质.【专题】计算题.【分析】设出两数列的首项为a,第三项为b(a>0,b>0),利用等差数列及等比数列的性质分别表示出a2与b2,由a与b都大于0,可得a2大于0,当b2小于0时,显然a2大于b2;当b2大于0时,利用基本不等式可得a2大于等于b2,综上,得到a2大于等于b2.【解答】解:根据题意设出两数列的首项为a,第三项为b(a>0,b>0),可得:2a2=a+b,b22=ab,又a>0,b>0,∴a2=>0,当b2<0时,b2=﹣<0,显然a2>b2;当b2>0时,b2=,∵≥,∴a2≥b2,综上,a2与b2的大小关系为a2≥b2.故选B【点评】此题考查了等差数列的性质,等比数列的性质,以及基本不等式的运用,利用了分类讨论的思想,是高考中常考的题型.3.函数f(x)=(x2﹣2x)ex的图象大致是()A. B. C. D.参考答案:A【考点】函数的图象与图象变化.【分析】本题是选择题,可采用排除法进行逐一排除,根据f(0)=0可知图象经过原点,以及根据导函数大于0时原函数单调递增,求出单调增区间,从而可以进行判定.【解答】解:因为f(0)=(02﹣2×0)e0=0,排除C;因为f'(x)=(x2﹣2)ex,解f'(x)>0,所以或时f(x)单调递增,排除B,D.故选A.4.复数在复平面内对应的点不可能位于(
)
.第一象限
.第二象限
.第三象限
.第四象限参考答案:A5.如图,AB是⊙O的直径,PB,PE分别切⊙O于B,C.若∠ACE=40°,则∠P=(
)A.60°
B.70°C.80°
D.90°参考答案:C6.一个正三棱柱的每一条棱长都是a,则经过底面一边和相对侧棱的一个端点的截面(即图中)的面积为(
) A. B. C. D.参考答案:A略7.等差数列中,且,是数列的前n项的和,则下列正确的是(
)A.S1,S2,S3均小于0,S4,S5,S6…均大于0
B.S1,S2,…S5均小于0,S6,S7…均大于0
C.S1,S2,…S9均小于0,S10,S11…均大于0
D.S1,S2,…S11均小于0,S12,S13…均大于0
参考答案:C略8.先后抛掷三次一枚质地均匀的硬币,落在水平桌面上,设事件A为“第一次正面向上”,事件B为“后两次均反面向上”,则概率(
)A. B. C. D.参考答案:C【分析】由先后抛掷三次一枚质地均匀的硬币,得出事件“第一次正面向上”,共有4种不同的结果,再由事件“第一次正面向上”且事件“后两次均反面向上”,仅有1中结果,即可求解.【详解】由题意,先后抛掷三次一枚质地均匀的硬币,共有种不同的结果,其中事件“第一次正面向上”,共有4种不同的结果,又由事件“第一次正面向上”且事件“后两次均反面向上”,仅有1中结果,所以,故选C.【点睛】本题主要考查了条件概率的计算,其中解答中认真审题,准确得出事件A和事件所含基本事件的个数是解答的关键,着重考查了运算能力,属于基础题.9.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x﹣85.71,则下列结论中不正确的是()A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg参考答案:D【考点】回归分析的初步应用.【分析】根据回归方程为=0.85x﹣85.71,0.85>0,可知A,B,C均正确,对于D回归方程只能进行预测,但不可断定.【解答】解:对于A,0.85>0,所以y与x具有正的线性相关关系,故正确;对于B,回归直线过样本点的中心(,),故正确;对于C,∵回归方程为=0.85x﹣85.71,∴该大学某女生身高增加1cm,则其体重约增加0.85kg,故正确;对于D,x=170cm时,=0.85×170﹣85.71=58.79,但这是预测值,不可断定其体重为58.79kg,故不正确故选D.10.有2个兴趣小组,甲、乙、丙三位同学各参加其中一个小组,每位同学参加各个小组的可能性相同.则这三位同学参加同一个兴趣小组的概率为()A.B.C.D.参考答案:A考点:相互独立事件的概率乘法公式.专题:计算题;概率与统计.分析:本题是一个古典概型,试验发生包含的事件数是2×2×2=8种结果,满足条件的事件是这三位同学参加同一个兴趣小组有2种结果,根据古典概型概率公式得到结果.解答:解:由题意知本题是一个古典概型,试验发生包含的事件数是2×2×2=8种结果,满足条件的事件是这三位同学参加同一个兴趣小组,由于共有2个小组,则有2种结果,根据古典概型概率公式得到P==,故选A.点评:本题考查古典概型概率公式,是一个基础题,确定试验发生包含的事件数和满足条件的事件数是关键.二、填空题:本大题共7小题,每小题4分,共28分11.在正方体中,P为对角线的三等分点,P到各顶点的距离的不同取值有_____________(个).参考答案:412.给出下列各对函数:①,②,③,④,其中是同一函数的是______________(写出所有符合要求的函数序号)参考答案:④13.椭圆(a>b>0)的四个顶点为A、B、C、D,若四边形ABCD的内切圆恰好过椭圆的焦点,则椭圆的离心率e=____.参考答案:14.设数列满足,且对任意的,满足,,则
参考答案:15.tan60°=__________.参考答案:【分析】由正切函数值直接求解即可【详解】故答案为【点睛】本题考察特殊角的三角函数值,是基础题,注意的值易错16.某个电路开关闭合后会出现红灯或绿灯闪烁,已知开关第一次闭合后出现红灯的概率为,两次闭合后都出现红灯的概率为,则在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为________.参考答案:.【分析】先记“第一次闭合后出现红灯”为事件,“第二次闭合后出现红灯”为事件,根据条件概率计算公式,即可求出结果.【详解】记“第一次闭合后出现红灯”为事件,“第二次闭合后出现红灯”为事件,则,,所以,在第一次闭合后出现红灯的条件下,第二次闭合闭合后出现红灯的概率为.故答案为【点睛】本题主要考查条件概率,熟记条件概率的计算公式即可,属于常考题型.17.已知集合P{a,b},Q={﹣1,0,1},则从集合P到集合Q的映射共有
种.参考答案:9【考点】映射.【分析】运用分步计数原理求解.【解答】解:集合P中的元素a在集合BQ中有3种不同的对应方式(﹣1,0,1三选一),集合P中的元素b在集合Q中也有3种不同的对应方式(﹣1,0,1三选一),根据“分步计数原理(乘法原理)”,集合P到集合Q的映射共有N=3×3=9,故答案为9.【点评】本题主要考查了映射的概念,以及两集合间构成映射个数的确定,可用列举法,也可用乘法计数原理,属于基础题.三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.在空间直角坐标系中,已知A(3,0,1)和B(1,0,﹣3),试问(1)在y轴上是否存在点M,满足|MA|=|MB|?(2)在y轴上是否存在点M,使△MAB为等边三角形?若存在,试求出点M坐标.参考答案:【分析】(1)若能求出y轴上点M满足|MA|=|MB|,则问题得到解决,故可先假设存在,设出点M(0,y,0),由|MA|=|MB|,建立关于参数y的方程,求y,若y值存在,则说明假设成立,在y轴上存在点M,满足|MA|=|MB|,否则说明不存在.(2)由(1)知,△MAB为等腰三角形,若能证明|MA|=|AB|则可以说明存在点M,使△MAB为等边三角形,故可令|MA|=|AB|建立方程求y,若y值存在,则说明存在,否则说明不存在.【解答】解:(1)假设在y轴上存在点M,满足|MA|=|MB|.因M在y轴上,可设M(0,y,0),由|MA|=|MB|,可得,显然,此式对任意y∈R恒成立.这就是说y轴上所有点都满足关系|MA|=|MB|.所以存在无数点M,满足|MA|=|MB|.(2)假设在y轴上存在点M,使△MAB为等边三角形.由(1)可知,y轴上任一点都有|MA|=|MB|,所以只要|MA|=|AB|就可以使得△MAB是等边三角形.因为|MA|=于是,解得故y轴上存在点M使△MAB等边,M坐标为(0,,0),或(0,,0).【点评】本题考点是点、线、面间的距离计算,考查用两点距离公式判断点M的存在性问题.其规律是假设存在,建立相关等式,求解,若能解出则说明假设成立,否则说明假设的对立面成立.在存在性问题的判断中,常用这一思路来解决问题.学习时应好好体会其中的逻辑关系以及此方法适应的范围.19.如图,将边长为2,有一个锐角为60°的菱形,沿着较短的对角线对折,使得,为的中点.(Ⅰ)求证:(Ⅱ)求三棱锥的体积;(Ⅲ)求二面角的余弦值.参考答案:解:(Ⅰ)连接,由已知得和是等边三角形,为的中点,
又边长为2,
由于,在中,
………2分,………4分(Ⅱ),………8分(Ⅲ)解法一:过,连接AE,
,
……10分
………12分
即二面角的余弦值为.………12分略20.已知函数.(1)求曲线在点(1,0)处的切线方程;(2)求过点(1,0)且与曲线相切的直线方程.参考答案:(1);(2)或.【分析】(1)
根据题意,先对函数进行求导,再求函数在点(1,0)处的导数即切线斜率,代入点斜式方程,再化为一般式方程即可。(2)
设切点坐标为,将代入得出,利用点斜式表达出直线方程,再将点(1,0)代入直线方程,即可求解出,从而推得直线方程的解析式。【详解】解:(1)由,,则曲线在点(1,0)处的切线方程为.(2)设切点的坐标为,则所求切线方程为代入点(1,0)的坐标得,解得或当时,所求直线方程为由(1)知过点(1,0)且与曲线相切的直线方程为或.故答案为或。【点睛】本题主要考查利用导数研究曲线上某点的切线方程。若已知曲线过点,求曲线过点的切线方程,则需分
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030中国芝士夹心饼干行业市场深度分析及发展趋势与投资研究报告
- 2025-2030中国自动化机器人行业市场深度调研及竞争格局与投资策略研究报告
- 2025-2030中国肿瘤生物标志物行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国美司钠注射液(美安)行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国组合前灯行业市场深度调研及前景趋势与投资研究报告
- 2025-2030中国红枣汁行业市场深度调研及发展趋势和投资前景预测研究报告
- 2025-2030中国移动终端设备行业发展分析及发展趋势与投资前景预测研究报告
- 2025-2030中国科技旅游行业市场深度调研及前景趋势与投资研究报告
- 2025-2030中国硅锰行业市场发展趋势与前景展望战略研究报告
- 2025-2030中国矿泥面膜行业市场深度调研及前景趋势与投资研究报告
- 食品采样检测流程
- 工程材料力学性能(束德林第三版)课后习题答案
- 开封文化艺术职业学院单招《职业技能测试》参考试题库(含答案)
- 高等数学课件第一章函数与极限
- 《坦克的发展历程》课件
- 军事研学旅行活动策划
- (完整)有效备课上课听课评课
- 血液科护士对输血反应的识别与处理
- 《工程材料基础》课件
- 渠道施工课件
- 预防艾滋病宣传教育主题班会
评论
0/150
提交评论