




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2022年安徽省合肥市第二十中学高二数学理月考试题含解析一、选择题:本大题共10小题,每小题5分,共50分。在每小题给出的四个选项中,只有是一个符合题目要求的1.若曲线y=x2+ax+b在点(0,b)处的切线方程是x-y+1=0,则()A.a=1,b=1B.a=-1,b=1
C.a=1,b=-1
D.a=-1,b=-1参考答案:A略2.一个正方体的展开图如图所示,A、B、C、D为原正方体的顶点,则在原来的正方体中(
)A.
B.AB与CD相交C.
D.AB与CD所成的角为参考答案:D将平面展开图还原成几何体,易知AB与CD所成的角为,选D。3.下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1
B.a>b-1C.a2>b2
D.a3>b3参考答案:A4.已知a>0,x,y满足约束条件,若z=2x+y的最小值为1,则a等于()A. B. C.1 D.2参考答案:B【考点】简单线性规划.【分析】作出不等式对应的平面区域,利用线性规划的知识,通过平移先确定z的最优解,然后确定a的值即可.【解答】解:先根据约束条件画出可行域,如图示:,z=2x+y,将最大值转化为y轴上的截距的最大值,当直线z=2x+y经过点B时,z最小,由得:,代入直线y=a(x﹣3)得,a=;故选:B.5.已知非零向量则△ABC为(
)A.等边三角形
B.等腰非直角三角形C.非等腰三角形
D.等腰直角三角形参考答案:B6.在曲线y=x3上切线的斜率为3的点是(
) A.(0,0) B.(1,1) C.(﹣1,﹣1) D.(1,1)或(﹣1,﹣1)参考答案:D考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:求出函数的导数,利用导数的几何意义求出切点坐标即可.解答: 解:曲线y=x3,可得y′=3x2,曲线y=x3上切线的斜率为3,可得3x2=3,解得x=±1,切点坐标为:(1,1)或(﹣1,﹣1).故选:D.点评:本题考查函数的导数的应用,导数的几何意义,考查计算能力.7.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1。则事件“抽到的不是一等品”的概率为(
)A.
0.7
B.
0.65
C.
0.35
D.
0.3参考答案:C8.类比平面内“垂直于同一条直线的两条直线互相平行”的性质,可推出空间下列结论:①垂直于同一条直线的两条直线互相平行
②垂直于同一个平面的两条直线互相平行③垂直于同一条直线的两个平面互相平行④垂直于同一个平面的两个平面互相平行,则正确的结论是(
).A.①② B.②③ C.③④ D.①④参考答案:B9.在如右上图的程序图中,输出结果是(
)A.5
B.10
C.20
D.15参考答案:C略10.已知α,β为锐角,且,cos(α+β)=,则cos2β=()A. B. C. D.参考答案:B【考点】GP:两角和与差的余弦函数.【分析】利用同角三角函数的基本关系,两角和差的余弦公式求得cosβ=cos[(α+β)﹣α]的值,再利用二倍角的余弦公式求得cos2β的值.【解答】解:∵α,β为锐角,且,∴sinα==,∵cos(α+β)=>0,∴α+β还是锐角,∴sin(α+β)==,则cosβ=cos[(α+β)﹣α]=cos(α+β)cosα+sincos(α+β)sinα=?+=,∴cos2β=2cos2β﹣1=,故选:B.二、填空题:本大题共7小题,每小题4分,共28分11.抛物线y2=8x的准线方程是
.参考答案:x=﹣2
【考点】抛物线的简单性质.【分析】根据抛物线方程的标准形式,可得抛物线以原点为顶点,开口向右,由2p=8算出=2,即可得到抛物线的准线方程.【解答】解:∵抛物线的方程为y2=8x∴抛物线以原点为顶点,开口向右.由2p=8,可得=2,可得抛物线的焦点为F(2,0),准线方程为x=﹣2故答案为:x=﹣2【点评】本题给出抛物线的标准方程,求抛物线的准线方程,着重考查了抛物线的标准方程与简单几何性质等知识,属于基础题.12.不等式ax2+bx+c>0的解集为{x|2<x<3},则不等式ax2-bx+c>0的解集为_______.参考答案:13.“若x∈R,使得x2+(a-1)x+1<0”是真命题,则实数a的取值范围是参考答案:14.某校高三年级有男生500人,女生400人,为了解该年级学生的健康情况,现采取分层抽样的方法从男生中任意抽取25人,那么应该在女生中任意抽取
人.参考答案:略15.函数的定义域为
.参考答案:由题可得:,故答案为:
16.设命题p:,,则为__________.参考答案:根据全称命题的定义得.17.连续抛掷两枚骰子,向上的点数之和为6的概率为
▲
参考答案:三、解答题:本大题共5小题,共72分。解答应写出文字说明,证明过程或演算步骤18.某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:零件的个数x(个)2345加工的时间y(小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程=x+,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间?参考公式:回归直线,其中参考答案:解:(1)散点图如图(2)由表格计算得=52.5,,=54,所以,所以,回归直线如上图;
(3)将x=10代入回归直线方程得,所以预测加工10个零件需要8.05小时略19.(本小题满分12分)已知箱中装有4个白球和5个黑球,且规定:取出一个白球得2分,取出一个黑球得1分.现从该箱中任取(无放回,且每球取到的机会均等)3个球,记随机变量X为取出此3球所得分数之和.(1)求X的分布列;(2)求得分大于4的概率.参考答案:(1)由题意得X取3,4,5,6,且20.已知函数f(x)=xlnx﹣x2﹣x+a,a∈R(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在其定义域内有两个不同的极值点(极值点是指函数取极值时对应的自变量的值),记为x1,x2,且x1<x2.(ⅰ)求a的取值范围;(ⅱ)若不等式e1+λ<x1?x恒成立,求正实数λ的取值范围.参考答案:(1)求出f(x)的解析式,求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的极小值即可;(2)(i)由导数与极值的关系知可转化为方程f′(x)=lnx﹣ax=0在(0,+∞)有两个不同根;再转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,或转化为函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点;或转化为g(x)=lnx﹣ax有两个不同零点,从而讨论求解;(ii)e1+λ<x1?x2λ可化为1+λ<lnx1+λlnx2,结合方程的根知1+λ<ax1+λax2=a(x1+λx2),从而可得a>;而a=,从而可得ln<恒成立;再令t=,t∈(0,1),从而可得不等式lnt<在t∈(0,1)上恒成立,再令h(t)=lnt﹣,从而利用导数化恒成立问题为最值问题即可.解:(1)a=0时,f(x)=xlnx﹣x,函数的定义域是(0,+∞),f(x)=lnx,令f′(x)>0,解得:x>1,令f′(x)<0,解得:0<x<1,故函数在(0,1)递减,在(1,+∞)递增,故函数的极小值是f(1)=﹣1;(2)(i)由题意知,函数f(x)的定义域为(0,+∞),方程f′(x)=0在(0,+∞)有两个不同根;即方程lnx﹣ax=0在(0,+∞)有两个不同根;(解法一)转化为函数y=lnx与函数y=ax的图象在(0,+∞)上有两个不同交点,如右图.可见,若令过原点且切于函数y=lnx图象的直线斜率为k,只须0<a<k.令切点A(x0,lnx0),故k=y′|x=x0=,又k=,故=,解得,x0=e,故k=,故0<a<.(解法二)转化为函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点又g′(x)=,即0<x<e时,g′(x)>0,x>e时,g′(x)<0,故g(x)在(0,e)上单调增,在(e,+∞)上单调减.故g(x)极大=g(e)=;又g(x)有且只有一个零点是1,且在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→0,故g(x)的草图如右图,可见,要想函数g(x)=与函数y=a的图象在(0,+∞)上有两个不同交点,只须0<a<.(解法三)令g(x)=lnx﹣ax,从而转化为函数g(x)有两个不同零点,而g′(x)=﹣ax=(x>0),若a≤0,可见g′(x)>0在(0,+∞)上恒成立,所以g(x)在(0,+∞)单调增,此时g(x)不可能有两个不同零点.若a>0,在0<x<时,g′(x)>0,在x>时,g′(x)<0,所以g(x)在(0,)上单调增,在(,+∞)上单调减,从而g(x)极大值=g()=ln﹣1,又因为在x→0时,g(x)→﹣∞,在在x→+∞时,g(x)→﹣∞,于是只须:g(x)极大>0,即ln﹣1>0,所以0<a<.综上所述,0<a<.(ii)因为e1+λ<x1?x2λ等价于1+λ<lnx1+λlnx2.由(i)可知x1,x2分别是方程lnx﹣ax=0的两个根,即lnx1=ax1,lnx2=ax2所以原式等价于1+λ<ax1+λax2=a(x1+λx2),因为λ>0,0<x1<x2,所以原式等价于a>,又由lnx1=ax1,lnx2=ax2作差得,ln=a(x1﹣x2),即a=,所以原式等价于>,因为0<x1<x2,原式恒成立,即ln<恒成立,令t=,t∈(0,1),则不等式lnt<在t∈(0,1)上恒成立.令h(t)=lnt﹣,又h′(t)=,当λ2≥1时,可见t∈(0,1)时,h′(t)>0,所以h(t)在t∈(0,1)上单调增,又h(1)=0,h(t)<0在t∈(0,1)恒成立,符合题意.当λ2<1时,可见t∈(0,λ2)时,h′(t)>0,t∈(λ2,1)时h′(t)<0,所以h(t)在t∈(0,λ2)时单调增,在t∈(λ2,1)时单调减,又h(1)=0,所以h(t)在t∈(0,1)上不能恒小于0,不符合题意,舍去.综上所述,若不等式e1+λ<x1?x2λ恒成立,只须λ2≥1,又λ>0,所以λ≥1.21.已知函数是定义在[-1,1]的奇函数(其中e是自然对数的底数).(1)求实数m的值;(2)若,求实数a的取值范围.参考答案:(1)1;(2).【分析】(1)因为函数是[-1,1]上的奇函数,故可得方程,从而可得的值,然后再对的值进行验证;(2)根据导数可求出函数为单调递增函数,又由于函数为奇函数,故将不等式转化为,再根据函数的定义域建立出不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 自助美甲店合作合同范本
- 高空作业安全打协议合同
- 消毒用品捐献协议书模板
- 浴场会所托管合同协议书
- 离婚前三年的财产协议书
- 物业零星工程施工协议书
- 自媒体运营团队合同范本
- 第三方协议护理网签合同
- 续签的合同上没竞业协议
- 糖果批发转让协议书模板
- GA/T 1323-2016基于荧光聚合物传感技术的痕量炸药探测仪通用技术要求
- 2023年苏州国发创业投资控股有限公司招聘笔试题库及答案解析
- 护士注册健康体检表下载【可直接打印版本】
- 高中历史《第一次工业革命》说课课件
- 学生集体外出活动备案表
- SH3904-2022年石油化工建设工程项目竣工验收规定
- 叉车检验检测报告
- DNF装备代码大全
- 基于Qt的俄罗斯方块的设计(共25页)
- 古建筑木构件油漆彩绘地仗施工技术分析
- 食堂投诉处理方案
评论
0/150
提交评论