人教版七年级下学期期末考试数学试卷共五套(含答案解析)_第1页
人教版七年级下学期期末考试数学试卷共五套(含答案解析)_第2页
人教版七年级下学期期末考试数学试卷共五套(含答案解析)_第3页
人教版七年级下学期期末考试数学试卷共五套(含答案解析)_第4页
人教版七年级下学期期末考试数学试卷共五套(含答案解析)_第5页
已阅读5页,还剩91页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版七年级下学期期末考试数学试卷(一)一、选择题:本题共10小题,每小题4分,共40分.1.(4分)坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0) C.(﹣1,2) D.(﹣2,﹣3)2.(4分)已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣13.(4分)下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣34.(4分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A. B. C. D.5.(4分)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠C+∠ABC=180°C.∠FDC=∠CD.∠FDC=∠A6.(4分)下列调查中,调查方式选择合理的是()A.了解某种型号节能灯的使用寿命,选择全面调查B.了解电视剧《人民的名义》的收视率,选择抽样调查C.端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择全面调查D.对神舟十一号宇宙飞船上某种零部件的检查,选择抽样调查7.(4分)有下列实数:,﹣3.14159,,0,,0.,,其中无理数的个数是()A.1个 B.2个 C.3个 D.4个8.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12Ex>12A.18户 B.20户 C.22户 D.24户9.(4分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2) B.(4,6) C.(4,4) D.(2,4)10.(4分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分.11.(5分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=60°,则∠2=.12.(5分)5﹣的整数部分是.13.(5分)不等式:2≤3x﹣7<8的所有整数解的和是.14.(5分)若点P(2﹣a,2a﹣1)到x轴的距离是3,则点P的坐标是.三、解答题:每小题8分,共16分.15.(8分)(1)计算:﹣+﹣(﹣1)2017;(2)求满足条件(x﹣2)2=9的x值.16.(8分)解方程组.四、解答题:每小题8分,共16分.17.(8分)解不等式组,并把解集表示在数轴上.18.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.五、解答题:每题10分,共20分.19.(10分)甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,问原来两车间各有多少名工人?20.(10分)在如图所示的正方形网格中,每个小正方形的边长均为1,△ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内画出平面直角坐标系,并写出点B的坐标.(2)请把△ABC先向右移5个单位长度,再向下移3个单位长度,得到△A′B′C′,请在图中画出△A′B′C′.(3)求△A′B′C′的面积.六、解答题:每题12分,共24分.21.(12分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?(4)若该学校有2000人,请你估计该学校选择羽毛球项目的学生人数.22.(12分)已知:如图,点D、E、G分别是△ABC边BC、AB和AC上的点,AD∥EF,点F在BC上,∠1=∠2=∠B.求证:①AB∥DG;②DG平分∠ADC.七、解答题:14分.23.(14分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.1.(4分)坐标平面内下列各点中,在x轴上的点是()A.(0,3) B.(﹣3,0) C.(﹣1,2) D.(﹣2,﹣3)【分析】根据点在x轴上的坐标特点解答即可.【解答】解:∵在x轴上的点的纵坐标是0,∴结合各选项在x轴上的点是(﹣3,0).故选B.【点评】本题主要考查了点在x轴上的点的坐标特点:纵坐标为0.2.(4分)已知是方程kx﹣y=3的解,那么k的值是()A.2 B.﹣2 C.1 D.﹣1【分析】把x与y的值代入方程计算即可求出k的值.【解答】解:把代入方程得:2k﹣1=3,解得:k=2,故选A【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.3.(4分)下列各式中,正确的是()A.=±2 B.=3 C.=﹣3 D.=﹣3【分析】根据一个正数的算术平方根和平方根的性质可判断A、B;根据可判断C;根据立方根的定义可判断D.【解答】解:,故A错误;=±3,故B错误;=|﹣3|=3,故C错误;正确.故选D.【点评】本题主要考查的是立方根、平方根和算术平方根的性质,熟记性质是解题的关键.4.(4分)一个不等式组的解集在数轴上表示如图,则这个不等式组可能是()A. B. C. D.【分析】根据数轴上的解集,大于﹣1小于等于2,可得答案.【解答】解:数轴上表示的解集:﹣1<x≤2,B不等式组的解集是大于﹣,小于等于2,故选:B.【点评】本题考查了在数轴上表示不等式组的解集,观察数轴上的表示的解集是解题关键.5.(4分)如图,下列条件能判定AD∥BC的是()A.∠C=∠CBE B.∠C+∠ABC=180° C.∠FDC=∠C D.∠FDC=∠A【分析】根据平行线的判断对每一项分别进行分析即可得出答案.【解答】解:A、∵∠C=∠CBE,∴DC∥AB,故本选项错误;B、∵∠C+∠ABC=180°,∴DC∥AB,故本选项错误;C、∵∠FDC=∠C,∴AD∥BC,故本选项正确;D、∵∠FDC=∠A,∴DC∥AB,故本选项错误;故选C.【点评】本题考查的是平行线的判定,熟练掌握内错角相等,两直线平行;同旁内角互补,两直线平行;同位角相等,两直线平行是本题的关键.6.(4分)下列调查中,调查方式选择合理的是()A.了解某种型号节能灯的使用寿命,选择全面调查B.了解电视剧《人民的名义》的收视率,选择抽样调查C.端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择全面调查D.对神舟十一号宇宙飞船上某种零部件的检查,选择抽样调查【分析】调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【解答】解:∵了解某种型号节能灯的使用寿命,选择抽样调查,∴选项A不符合题意;∵了解电视剧《人民的名义》的收视率,选择抽样调查,∴选项B符合题意;∵端午节期间,国家食品安全检查部门调查市场上粽子的质量情况,选择抽样调查,∴选项C不符合题意;∵对神舟十一号宇宙飞船上某种零部件的检查,选择全面调查,∴选项D不符合题意.故选:B.【点评】此题主要考查了全面调查与抽样调查,要熟练掌握,如何选择调查方法要根据具体情况而定.7.(4分)有下列实数:,﹣3.14159,,0,,0.,,其中无理数的个数是()A.1个 B.2个 C.3个 D.4个【分析】根据无理数、有理数的定义即可判定选择项.【解答】解:,﹣3.14159,0,,0.是有理数,,是无理数,故选:B.【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,,0.8080080008…(每两个8之间依次多1个0)等形式.8.(4分)自来水公司调查了若干用户的月用水量x(单位:吨),按月用水量将用户分成A、B、C、D、E五组进行统计,并制作了如图所示的扇形统计图,已知除B组以外,参与调查的用户共64户,则所有参与调查的用户中用水量在6吨以下的共有()组别月用水量x(单位:吨)A0≤x<3B3≤x<6C6≤x<9D9≤x<12Ex>12A.18户 B.20户 C.22户 D.24户【分析】根据除B组以外参与调查的用户共64户及A、C、D、E四组的百分率可得参与调查的总户数及B组的百分率,将总户数乘以月用水量在6吨以下(A、B两组)的百分率可得答案.【解答】解:∵被调查的户数为=80(户),其中B组用户数占被调查户数的百分比为:1﹣10%﹣35%﹣30%﹣5%=20%,则所有参与调查的用户中月用水量在6吨以下的共有:80×(10%+20%)=24(户),故选:D.【点评】本题主要考查了扇形统计图,解题的关键是能识图,理解各部分百分率同总数之间的关系.9.(4分)在平面直角坐标系中,已知点A(﹣4,0)和B(0,2),现将线段AB沿着直线AB平移,使点A与点B重合,则平移后点B坐标是()A.(0,﹣2) B.(4,6) C.(4,4) D.(2,4)【分析】先根据点A、B的坐标确定出平移规律,再求解即可.【解答】解:∵点A(﹣4,0),点B(0,2),平移后点A、B重合,∴平移规律为向右平移4个单位,向上平移2个单位,∴点B的对应点的坐标为(4,4).故选:C.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.10.(4分)我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x匹,小马有y匹,那么可列方程组为()A. B.C. D.【分析】设大马有x匹,小马有y匹,根据题意可得等量关系:①大马数+小马数=100;②大马拉瓦数+小马拉瓦数=100,根据等量关系列出方程组即可.【解答】解:设大马有x匹,小马有y匹,由题意得:,故选:C.【点评】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系,列出方程组.二、填空题:本题共4小题,每小题5分,共20分.11.(5分)如图,已知a∥b,直角三角板的直角顶点在直线a上,若∠1=60°,则∠2=30°.【分析】根据两直线平行,内错角相等可得∠3=∠1,再根据平角等于180°列式计算即可得解.【解答】解:如图,∵a∥b,∴∠3=∠1=60°,∴∠2=180°﹣90°﹣∠3=180°﹣90°﹣60°=30°.故答案为:30°.【点评】本题考查了平行线的性质,平角的定义,熟记性质并准确识图是解题的关键.12.(5分)5﹣的整数部分是2.【分析】先估计的近似值,然后判断5﹣的近似值,最后得出5﹣的整数部分.【解答】解:∵4<5<9,∴2<<3,∴﹣3<<﹣2.∴2<5﹣<3.故5﹣的整数部分是2.【点评】此题主要考查了估算无理数的大小,注意首先估算无理数的值,再根据不等式的性质进行计算.现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.13.(5分)不等式:2≤3x﹣7<8的所有整数解的和是7.【分析】将已知的双向不等式转化为一个一元一次不等式组,求出不等式组的解集,找出解集中的所有整数解,求出之和即可.【解答】解:不等式:2≤3x﹣7<8可化为:,由不等式①移项合并得:3x≥9,解得:x≥3;由不等式②移项合并得:3x<15,解得:x<5,∴不等式组的解集为3≤x<5,即整数解为:3,4,则原不等式的所有整数解的和为3+4=7.故答案为:7【点评】此题考查了一元一次不等式组的整数解,以及一元一次不等式组的解法,求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.14.(5分)若点P(2﹣a,2a﹣1)到x轴的距离是3,则点P的坐标是(0,3)或(3,﹣3).【分析】根据点到x轴的距离是纵坐标的绝对值,可得答案.【解答】解:由题意,得2a﹣1=3或2a﹣1=﹣3,解得a=2,或a=﹣1.点P的坐标是(0,3)或(3,﹣3),故答案为:(0,3)或(3,﹣3).【点评】本题考查了点的坐标,利用点到x轴的距离是纵坐标的绝对值是解题关键.三、解答题:每小题8分,共16分.15.(8分)(1)计算:﹣+﹣(﹣1)2017;(2)求满足条件(x﹣2)2=9的x值.【分析】(1)本题涉及二次根式化简、开立方和乘方.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.(2)两边直接开平方可得x﹣2=±3,再解一元一次方程即可.【解答】解:(1)原式=﹣4++1=﹣4=﹣=﹣;(2)开平方得:x﹣2=±3,x﹣2=3,x﹣2=﹣3,解得:x1=5,x2=﹣1.【点评】此题主要考查了实数的运算,以及一元二次方程的解法,关键是掌握二次根式化简、开立方和乘方运算,掌握实数的运算顺序.16.(8分)解方程组.【分析】首先对原方程组化简,然后①×2运用加减消元法求解.【解答】解:原方程组可化为:,①×2+②得11x=22,∴x=2,把x=2代入①得:y=3,∴方程组的解为.【点评】此题考查的是解二元一次方程组,关键是先化简在运用加减消元法解方程组.四、解答题:每小题8分,共16分.17.(8分)解不等式组,并把解集表示在数轴上.【分析】先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:∵解不等式①得:x≥﹣1,解不等式②得:x<0.8,∴不等式组的解集为﹣1≤x<0.8,在数轴上表示为:.【点评】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解此题的关键.18.(8分)已知:如图AB∥CD,EF交AB于G,交CD于F,FH平分∠EFD,交AB于H,∠AGE=50°,求:∠BHF的度数.【分析】由AB∥CD得到∠AGE=∠CFG,又FH平分∠EFD,∠AGE=50°,由此可以先后求出∠GFD,∠HFD,∠BHF.【解答】解:∵AB∥CD,∴∠CFG=∠AGE=50°,∴∠GFD=130°;又FH平分∠EFD,∴∠HFD=∠EFD=65°;∴∠BHF=180°﹣∠HFD=115°.【点评】两直线平行时,应该想到它们的性质;由两直线平行的关系可以得到角之间的数量关系,从而达到解决问题的目的.五、解答题:每题10分,共20分.19.(10分)甲、乙两个车间工人人数不等,若甲车间调10人给乙车间,则两车间人数相等;若乙车间调10人给甲车间,则甲车间现有的人数就是乙车间余下人数的2倍,问原来两车间各有多少名工人?【分析】可直接设两车间的人数,根据题意找出两个等量关系:①甲车间的人数﹣10=乙车间的人数;②甲车间的人数+10=2×(乙车间的人数﹣10),根据这两个等量关系可列出方程组.【解答】解:设甲车间有x名工人,乙车间有y名工人,由题意得:,整理得,解得.答:甲车间有70名工人,乙车间有50名工人.【点评】本题主要考查二元一次方程组的应用,关键在于理解清楚题意,找出等量关系,列出方程组求解.20.(10分)在如图所示的正方形网格中,每个小正方形的边长均为1,△ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内画出平面直角坐标系,并写出点B的坐标.(2)请把△ABC先向右移5个单位长度,再向下移3个单位长度,得到△A′B′C′,请在图中画出△A′B′C′.(3)求△A′B′C′的面积.【分析】(1)根据点C的坐标,即可找出x、y轴的位置,以此建立直角坐标系即可;(2)找出点A、B、C平移后的点A′、B′、C′,将其两两相连即可;(3)由△A′B′C′的面积等于矩形的面积减去三个小三角线的面积,即可求出△A′B′C′的面积.【解答】解:(1)如图所示建立直角坐标系,点B的坐标为(﹣2,1).(2)依照题意平移△ABC,得到△A′B′C′,如图所示.(3)S△A′B′C′=3×4﹣×4×2﹣×3×2﹣×1×2=4.【点评】本题考查了作图中的平移变换以及三角形的面积,解题的关键是:(1)根据点B的坐标确定x、y轴的位置;(2)找出点A、B、C平移后的点A′、B′、C′;(3)利用分割图形法求△A′B′C′的面积.六、解答题:每题12分,共24分.21.(12分)某学校准备开展“阳光体育活动”,决定开设以下体育活动项目:足球、乒乓球、篮球和羽毛球,要求每位学生必须且只能选择一项,为了解选择各种体育活动项目的学生人数,随机抽取了部分学生进行调查,并将通过获得的数据进行整理,绘制出以下两幅不完整的统计图,请根据统计图回答问题:(1)这次活动一共调查了多少名学生?(2)补全条形统计图;(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角等于多少度?(4)若该学校有2000人,请你估计该学校选择羽毛球项目的学生人数.【分析】(1)由“足球”人数及其百分比可得总人数;(2)根据各项目人数之和等于总人数求出“篮球”的人数,补全图形即可;(3)用“篮球”人数占被调查人数的比例乘以360°即可;(4)用总人数乘以样本中羽毛球所占百分比即可得.【解答】解:(1)80÷32%=250,答:这次活动一共调查了250名学生;(2)篮球的人数为250﹣(80+60+40)=70,补全图形如下:(3)在扇形统计图中,选择篮球项目的人数所在扇形的圆心角为360°×=100.8°;(4)2000×=320,答:估计该学校选择羽毛球项目的学生人数为320人.【点评】本题考查了条形统计图和扇形统计图,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(12分)已知:如图,点D、E、G分别是△ABC边BC、AB和AC上的点,AD∥EF,点F在BC上,∠1=∠2=∠B.求证:①AB∥DG;②DG平分∠ADC.【分析】①根据平行线的性质得出∠1=∠BAD,求出∠2=∠BAD,根据平行线的判定得出即可;②根据平行线的性质得出∠B=∠CDG,求出∠2=∠CDG,根据平行线的判定得出即可.【解答】证明:①∵EF∥AD,∴∠1=∠BAD,∵∠1=∠2,∴∠2=∠BAD,∴AB∥DG;②∵AB∥DG,∴∠B=∠CDG,∵∠2=∠B,∴∠2=∠CDG,∴DG平分∠ADC.【点评】本题考查了平行线的性质和判定,能灵活运用平行线的判定和性质定理进行推理是解此题的关键.七、解答题:14分.23.(14分)某中学开学初到商场购买A、B两种品牌的足球,购买A种品牌的足球50个,B种品牌的足球25个,共花费4500元,已知购买一个B种品牌的足球比购买一个A种品牌的足球多花30元.(1)求购买一个A种品牌、一个B种品牌的足球各需多少元.(2)学校为了响应“足球进校园”的号召,决定再次购进A、B两种品牌足球共50个,正好赶上商场对商品价格进行调整,A品牌足球售价比第一次购买时提高4元,B品牌足球按第一次购买时售价的9折出售,如果学校此次购买A、B两种品牌足球的总费用不超过第一次花费的70%,且保证这次购买的B种品牌足球不少于23个,则这次学校有哪几种购买方案?(3)请你求出学校在第二次购买活动中最多需要多少资金?【分析】(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球单价比A种足球贵30元”可得出关于x、y的二元一次方程组,解方程组即可得出结论;(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,根据“总费用=买A种足球费用+买B种足球费用,以及B种足球不小于23个”可得出关于m的一元一次不等式组,解不等式组可得出m的取值范围,由此即可得出结论;(3)分析第二次购买时,A、B种足球的单价,即可得出哪种方案花钱最多,求出花费最大值即可得出结论.【解答】解:(1)设A种品牌足球的单价为x元,B种品牌足球的单价为y元,依题意得:,解得:.答:购买一个A种品牌的足球需要50元,购买一个B种品牌的足球需要80元.(2)设第二次购买A种足球m个,则购买B种足球(50﹣m)个,依题意得:,解得:25≤m≤27.故这次学校购买足球有三种方案:方案一:购买A种足球25个,B种足球25个;方案二:购买A种足球26个,B种足球24个;方案三:购买A种足球27个,B种足球23个.(3)∵第二次购买足球时,A种足球单价为50+4=54(元),B种足球单价为80×0.9=72(元),∴当购买方案中B种足球最多时,费用最高,即方案一花钱最多.∴25×54+25×72=3150(元).答:学校在第二次购买活动中最多需要3150元资金.【点评】本题考查了二元一次方程组的应用以及一元一次不等式组的应用,解题的关键是:(1)根据数量关系找出关于x、y的二元一次方程组;(2)根据数量关系找出关于m的一元一次不等式组;(3)确定花费最多的方案.本题属于中档题,难度不大,解决该题型题目时,根据数量关系列出方程(方程组、不等式或不等式组)是关键.人教版七年级下学期期末考试数学试卷(二)一、选择题(每小题3分,共30分)1.(3分)不等式3x<18的解集是()A..x>6 B..x<6 C.x<﹣6 D.x<02.(3分)下列各对数值,是方程2x﹣3y=6的解是()A. B. C. D.3.(3分)x与5的和的一半是负数,用不等式表示为()A.x+>0 B.(x+5)≥0 C.(x+5)>0 D.(x+5)<04.(3分)下列语句正确的是()A.0.64的平方根是0.8B.带根号的数都是无理数C.若x3=125,则125是x的立方根D.﹣是3的平方根5.(3分)不等式2x﹣5≥﹣1的解集在数轴上表示正确的是()A. B. C. D.6.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣5>b﹣5 B.3+a>b﹣3 C.> D.﹣3a>﹣3b7.(3分)如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A.10,4 B.4,10 C.3,10 D.10,38.(3分)一个长方形的周长是10,长比宽的2倍少1.若设长为x,宽为y,则x、y适合的方程组是()A. B.C. D.9.(3分)若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>110.(3分)不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥4二.填空题(每题3分,共24分)11.(3分)已知点A(﹣2,0),B(3,0),C(5,﹣4),则S△ABC=.12.(3分)已知二元一次方程组为,则x+y=.13.(3分)不等式4x≤12的自然数解是:.14.(3分)若|x+2|+(2y﹣x)2=0,则x=,y=.15.(3分)如图,AB∥CD,CE平分∠BCD,∠DCE=16°,则∠B等于.16.(3分)若不等式组的解集是空集,则a、b的大小关系是.17.(3分)若点(m﹣3,m+2)在第二象限,则m的取值范围是.18.(3分)已知方程组,当m时,x+y>0.三、解答题(共3小题,满分36分)19.(22分)解方程组或不等式(组)(1)(代入法)(2)(3)1+≥2﹣(4)解不等式组,并把解集表示在数轴上,再写出这个不等式组的整数解.20.(6分)x为何值时,代数式﹣的值不大于1?21.(8分)某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人,问该宾馆底层有多少间客房?四.学以致用(10分)22.(10分)甲、乙两班同学去购买苹果,价格如下表购买苹果a千克α<3030≤α≤50α>50每千克价格(元)32.52甲班同学分两次共买了70千克(第二次多于第一次),共付189元,而乙班同学一次性购买70千克.(1)乙班同学比甲班同学少付多少元?(2)甲班同学第一、二次分别购买苹果多少千克?参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)不等式3x<18的解集是()A..x>6 B..x<6 C.x<﹣6 D.x<0【分析】不等式x系数化为1,即可求出解集.【解答】解:不等式3x<18,解得:x<6,故选B【点评】此题考查了解一元一次不等式,熟练掌握运算法则是解本题的关键.2.(3分)下列各对数值,是方程2x﹣3y=6的解是()A. B. C. D.【分析】根据使二元一次方程左右相等的未知数的值,可得答案.【解答】解:把x=0,y=4代入2x﹣3y=6得:2×0﹣3×4=﹣12≠6,左边≠右边,∴选项A不是方程2x﹣3y=6的解;把x=1,y=﹣2.5代入2x﹣3y=6得:2×1﹣3×(﹣2)=8≠6,左边≠右边,∴选项B不是方程2x﹣3y=6的解;把x=2,y=﹣1代入2x﹣3y=6得:2×2﹣3×(﹣1)=7≠6,左边≠右边,∴选项C不是方程2x﹣3y=6的解;把x=3,y=0代入2x﹣3y=6得:2×3﹣3×0=6,左边=右边,∴选项D是方程2x﹣3y=6的解;故选:D.【点评】本题考查二元一次方程的解的定义,要求理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.3.(3分)x与5的和的一半是负数,用不等式表示为()A.x+>0 B.(x+5)≥0 C.(x+5)>0 D.(x+5)<0【分析】理解:负数值小于0.【解答】解:由题意知.故选D.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.4.(3分)下列语句正确的是()A.0.64的平方根是0.8B.带根号的数都是无理数C.若x3=125,则125是x的立方根D.﹣是3的平方根【分析】A、根据平方根的定义即可判定;B、根据无理数的定义即可判定;C、根据立方根的定义即可判定;D、根据平方根的定义即可判定.【解答】解:A、0.64的平方根为±0.8,故选项A错误;B、带根号的数不一定都是无理数,例如,故选项B错误;C、x是125的立方根,说法错误,故选项C错误;D、说法正确,故选项正确.故选D.【点评】此题主要考查了立方根、平方根、无理数的定义,要求学生熟练掌握平方根,立方根及无理数的含义.5.(3分)不等式2x﹣5≥﹣1的解集在数轴上表示正确的是()A. B. C. D.【分析】不等式2x﹣5≥﹣1的解集是x≥2,大于应向右画,且包括2时,应用实心表示,据此可判断答案.【解答】解:不等式2x﹣5≥﹣1的解集为x≥2.故选B.【点评】在数轴上表示不等式的解集时,大于向右,小于向左,有等于号的画实心原点,没有等于号的画空心圆圈.6.(3分)已知实数a,b,若a>b,则下列结论错误的是()A.a﹣5>b﹣5 B.3+a>b﹣3 C.> D.﹣3a>﹣3b【分析】根据不等式的基本性质对各选项进行逐一分析即可.【解答】解:a>b,A、a﹣5>b﹣5,故A选项正确;B、3+a>b﹣3,故B选项正确;C、>,故C选项正确;D、﹣3a<﹣3b,故D选项错误.故选:D.【点评】本题考查的是不等式的基本性质,熟知不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变是解答此题的关键.7.(3分)如果方程组的解为,那么被“★”“■”遮住的两个数分别是()A.10,4 B.4,10 C.3,10 D.10,3【分析】把代入2x+y=16先求出■,再代入x+y求★.【解答】解:把代入2x+y=16得12+■=16,解得■=4,再把代入x+y=★得★=6+4=10,故选:A.【点评】本题主要考查了二元一次方程组的解,解题的关键是理解题意,代入法求解.8.(3分)一个长方形的周长是10,长比宽的2倍少1.若设长为x,宽为y,则x、y适合的方程组是()A. B.C. D.【分析】利用长方形的周长=2×(长+宽),得出2(x+y)=10;由长比宽的2倍少1得出x=2y﹣1.根据这两个等量关系,可列方程组.【解答】解:设长为x,宽为y,由题意得或.故选:A.【点评】此题考查从实际问题中抽出二元一次方程组,找出题目蕴含的数量关系是解决问题的关键.9.(3分)若不等式ax+x>1+a的解集是x<1,则a必须满足的条件是()A.a<﹣1 B.a<1 C.a>﹣1 D.a>1【分析】根据不等式的性质3:不等式两边除以同一个负数时,不等式的方向改变,可知a+1<0,由此得到a满足的条件.【解答】解:由原不等式可得(1+a)x>1+a,两边都除以1+a,得:x<1,∴1+a<0,解得:a<﹣1,故选:A.【点评】本题考查了不等式的解集及不等式的性质,根据解集中不等式的方向改变,得出a+1<0是解题的关键.10.(3分)不等式组的解集为x<4,则a满足的条件是()A.a<4 B.a=4 C.a≤4 D.a≥4【分析】先解不等式组,解集为x<a且x<4,再由不等式组的解集为x<4,由“同小取较小”的原则,求得a取值范围即可.【解答】解:解不等式组得,∵不等式组的解集为x<4,∴a≥4.故选:D.【点评】本题考查了不等式组解集的四种情况:①同大取较大,②同小取较小,③小大大小中间找,④大大小小解不了.二.填空题(每题3分,共24分)11.(3分)已知点A(﹣2,0),B(3,0),C(5,﹣4),则S△ABC=10.【分析】根据题意得出AB的长以及△ABC的高进而求出答案.【解答】解:如图,∵点A(﹣2,0),B(3,0),C(5,﹣4),∴AB=3+2=5,C到x轴的距离为:4,则△ABC的面积是:×5×4=10.故答案为:10.【点评】此题主要考查了三角形的面积,坐标与图形的性质,正确得出△ABC的高是解题关键.12.(3分)已知二元一次方程组为,则x+y=5.【分析】直接将两式相加,合并同类项,正好x与y的系数相同,可以直接求出x+y的值.【解答】解:将①式加②式得,2x+y+x+2y=15,3x+3y=15,解得,x+y=5.故本题答案为:5.【点评】本题考查二元一次方程组的解法,但是不需要分别解出两个未知数的值,那样比较麻烦,经过观察发现两式相加以后的系数相同,故可直接求两个未知数的和.13.(3分)不等式4x≤12的自然数解是:0,1,2,3.【分析】首先解不等式,然后确定不等式的自然数解即可.【解答】解:系数化成1得:x≤3.则自然数解是0,1,2,3,故答案为:0,1,2,3.【点评】本题考查了不等式的解法,解一元一次不等式的基本依据是不等式的基本性质,解不等式是本题的关键.14.(3分)若|x+2|+(2y﹣x)2=0,则x=﹣2,y=﹣1.【分析】根据非负数的性质,列出关于x,y的二元一次方程组,求出x,y的值即可.【解答】解:∵|x+2|+(2y﹣x)2=0,∴,解得故答案为﹣2,﹣1.【点评】本题考查了解二元一次方程组,非负数的性质、以及绝对值,要注意几个非负数的和为0,则这几个数都是0.15.(3分)如图,AB∥CD,CE平分∠BCD,∠DCE=16°,则∠B等于32°.【分析】根据角平分线的定义可得∠BCD=2∠DCE,然后根据两直线平行,内错角相等可得∠B=∠BCD.【解答】解:∵CE平分∠BCD,∴∠BCD=2∠DCE=2×16=32°,∵AB∥CD,∴∠B=∠BCD=32°.故答案为:32°.【点评】本题考查了平行线的性质,角平分线的定义,熟记性质与概念是解题的关键.16.(3分)若不等式组的解集是空集,则a、b的大小关系是b≥a.【分析】根据大大小小无解进行解答即可.【解答】解:∵不等式组的解集是无解,∴b≥a,故答案为:b≥a.【点评】此题主要考查了不等式的解集,关键是正确理解“大大小小无解”的含义.17.(3分)若点(m﹣3,m+2)在第二象限,则m的取值范围是﹣2<m<3.【分析】根据第二象限内点坐标为负、纵坐标为正列出不等式组,解之可得.【解答】解:根据题意可得,解得:﹣2<m<3,故答案为:﹣2<m<3.【点评】本题主要考查点的坐标和解不等式组的能力,根据点的坐标列出关于m的不等式组是解题的关键.18.(3分)已知方程组,当m>﹣2时,x+y>0.【分析】解此题首先要把字母m看做常数,然后解得x、y的值,结合题意,列得一元一次不等式,解不等式即可.【解答】解:,②×2﹣①得:x=﹣3③,将③代入②得:y=m+5,所以原方程组的解为,∵x+y>0,∴﹣3+m+5>0,解得m>﹣2,∴当m>﹣2时,x+y>0.故答案为>﹣2.【点评】此题考查了二元一次方程组的解的定义,提高了学生的计算能力,解题的关键是把字母m看做常数,然后解二元一次方程组与一元一次不等式.三、解答题(共3小题,满分36分)19.(22分)解方程组或不等式(组)(1)(代入法)(2)(3)1+≥2﹣(4)解不等式组,并把解集表示在数轴上,再写出这个不等式组的整数解.【分析】(1)代入消元法求解可得;(2)加减消元法求解可得;(3)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得.(4)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)由3x﹣y=2‚得:y=3x﹣2,把ƒ代入2x+3y=5得2x+3(3x﹣2)=5解得:x=1,把x=1代入y=3x﹣2ƒ得y=1,则方程组的解为;(2)由②×4﹣①得13x=26解得:x=2,把x=2代入‚4x+y=9得y=1,∴;(3)去分母:6+3(x+1)≥12﹣2(x+7),去括号:6+3x+3≥12﹣2x﹣14,移项:3x+2x≥12﹣14﹣6﹣3,合并同类项:5x≥﹣11,系数化为1:x≥﹣;(4)解不等式得11﹣2(x﹣3)≥3(x﹣1),得:x≤4,解不等式x﹣2>‚得x>,则不等式组的解集为<x≤4,把解集在数轴上表示:,∴不等式组的整数解为2、3、4.【点评】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键20.(6分)x为何值时,代数式﹣的值不大于1?【分析】首先建立不等式,进一步利用不等式的性质求得解集即可.【解答】解:由题意得≤1,解得x≤﹣,所以当x取不大于﹣的值时,代数式的值不大于1.【点评】本题考查了不等式的性质:(1)不等式的两边同时加上或减去同一个数或整式不等号的方向不变;(2)不等式的两边同时乘以或除以同一个正数不等号的方向不变;(3)不等式的两边同时乘以或除以同一个负数不等号的方向改变.21.(8分)某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人,问该宾馆底层有多少间客房?【分析】设该宾馆有x间客房,根据某旅游团有48人到某宾馆住宿,若全安排住宾馆的底层,每间住4人,房间不够;每间住5人,有一个房间没有住满5人,可列出不等式组求解.【解答】解:设该宾馆底层有x间客房.解得9.6<x<10.6.底层房间可能有10间.【点评】本题考查理解题意能力,关键是知道人数,设出房间数,根据题目所给的条件列出不等式组求解.四.学以致用(10分)22.(10分)甲、乙两班同学去购买苹果,价格如下表购买苹果a千克α<3030≤α≤50α>50每千克价格(元)32.52甲班同学分两次共买了70千克(第二次多于第一次),共付189元,而乙班同学一次性购买70千克.(1)乙班同学比甲班同学少付多少元?(2)甲班同学第一、二次分别购买苹果多少千克?【分析】(1)由乙班一次性购买70kg,结合总价=单价×数量可求出乙班需付的钱数,将其与甲班支付的费用做差后即可得出结论;(2)设甲班同学第一次购买苹果x千克,第二次购买苹果y千克,分x<30、30≤y≤50;30≤x<y≤50;x<30、y>50三种情况找出关于x、y的二元一次方程组,解之即可得出结论.【解答】(1)∵乙班一次性购买70kg,70>50,∴乙班付70×2=140(元),∴189﹣140=49(元).答:乙班同学比甲班同学少付49元.(2)设甲班同学第一次购买苹果x千克,第二次购买苹果y千克,分三种情况考虑:①当x<30、30≤y≤50时,根据题意得:,解得:;②当30≤x<y≤50时,2.5×70=175(元).∵175≠189,∴不合题意,舍去;③当x<30、y>50时,根据题意得:,解得:.∵y>50,∴不合题意,舍去.答:甲班同学第一次购买苹果28千克、第二次购买苹果42千克.【点评】本题考查了二元一次方程组的应用,解题的关键是:(1)根据数量关系,列式计算;(2)分x<30、30≤y≤50;30≤x<y≤50;x<30、y>50三种情况列出关于x、y的二元一次方程组.人教版七年级下学期期末考试数学试卷(三)一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A.130° B.140° C.150° D.160°2.(3分)估算﹣2的值()A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间3.(3分)若点P(a,b)在第三象限,则点M(b﹣1,﹣a+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4.(3分)若a>b,则下列各式中正确的是()A.a﹣<b﹣ B.﹣4a>﹣4b C.﹣2a+1<﹣2b+1 D.a2>b25.(3分)已知方程组的解满足x+y=2,则k的算术平方根为()A.4 B.﹣2 C.﹣4 D.26.(3分)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125° B.120° C.140° D.130°7.(3分)如图,在数轴上表示﹣1,﹣的对应点为A,B,若点A是线段BC的中点,则点C表示的数为()A.1﹣ B.2﹣ C.﹣1 D.﹣28.(3分)观察下列图形:它们是按一定的规律排列,依照此规律第n个图形共有()个五角星.A.1+n B.1+2n C.2+n D.1+3n9.(3分)如今中学生睡眠不足的问题正愈演愈烈,“缺觉”已是全国中学生们的老大难问题,教育部规定,初中生每天的睡眠时间应为9个小时,鹏鹏记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则鹏鹏这一周的睡眠够9个小时的有()A.1天 B.2天 C.3天 D.4天10.(3分)现有八个大小相同的长方形,可拼成如图①,②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小正方形的面积是()A.50 B.60 C.70 D.80二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)﹣3的相反数是.12.(3分)如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为.13.(3分)一组数据的最大值为169,最小值为141,在绘制频数分布直方图时要求组据为6,则组数为.14.(3分)若关于x的不等式组无解,则实数a的取值范围是.15.(3分)如图1是长方形纸袋,∠DEF=α,将纸袋沿EF折叠成图2,在沿BF折叠成图3,用α表示图3中∠CFE的大小为16.(3分)如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.则下列结论:①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论(填编号).三、解答题:本大题共7小题,共52分.17.(5分)计算:||﹣+.18.(5分)解方程组:.19.(6分)解不等式组:,并把解集在数轴上表示出来.20.(8分)如图,先将三角形ABC向左平移3个单位长度,再向下平移4个单位长度,得到三角形A1B1C1.(1)画出经过两次平移后的图形,并写出A1,B1,C1的坐标;(2)已知三角形ABC内部一点P的坐标为(a,b),若点P随三角形ABC一起平移,请写出平移后点P的对应点P1的坐标;(3)求三角形ABC的面积.21.(8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了名同学的体育测试成绩,扇形统计图中B级所占的百分比b=;(2)补全条形统计图;(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)均有名.22.(10分)某公司有A、B两种型号的客车共15辆,它们的载客量,每天的租金和车辆数如下表所示,已知在15辆客车都坐满的情况下,共载客570人A型号客车B型号客车载客量(人/辆)4530租金(元/辆)400280车辆数(辆)ab(1)求表中a,b的值;(2)某中学计划租用A、B两种型号的客车共5辆,同时送七年级师生到基地参加社会实践活动,已知该中学租车的总费用不超过1900元.①求最多能租用多少辆A型号客车?②若七年级的师生共有195人,请写出所有可能的租车方案,并确定最省钱的租车方案.23.(10分)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.参考答案与试题解析一、选择题:本大题共10小题,每小题3分,共30分.1.(3分)如图,直线AB、CD相交于点O,若∠1+∠2=100°,则∠BOC等于()A.130° B.140° C.150° D.160°【分析】两直线相交,对顶角相等,即∠AOC=∠BOD,已知∠AOC+∠BOD=100°,可求∠AOC;又∠AOC与∠BOC互为邻补角,即∠AOC+∠BOC=180°,将∠AOC的度数代入,可求∠BOC.【解答】解:∵∠AOC与∠BOD是对顶角,∴∠AOC=∠BOD,又∵∠AOC+∠BOD=100°,∴∠AOC=50°.∵∠AOC与∠BOC互为邻补角,∴∠BOC=180°﹣∠AOC=180°﹣50°=130°.故选A.【点评】本题考查对顶角的性质以及邻补角的定义,是一个需要熟记的内容.2.(3分)估算﹣2的值()A.在1到2之间 B.在2到3之间 C.在3到4之间 D.在4到5之间【分析】先估算的值,再估算﹣2,即可解答.【解答】解:∵5<<6,∴3<﹣2<4,故选:C.【点评】本题考查了估算无理数的大小,解决本题的关键是估算的值.3.(3分)若点P(a,b)在第三象限,则点M(b﹣1,﹣a+1)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限【分析】根据第三象限内点的横坐标与纵坐标都是负数判断出a、b的正负情况,再判断出点M的横坐标与纵坐标的正负情况,然后根据各象限内点的坐标特征解答.【解答】解:∵点P(a,b)在第三象限,∴a<0,b<0,∴b﹣1<0,﹣a+1>0,∴点M(b﹣1,﹣a+1)在第二象限.故选B.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).4.(3分)若a>b,则下列各式中正确的是()A.a﹣<b﹣ B.﹣4a>﹣4b C.﹣2a+1<﹣2b+1 D.a2>b2【分析】根据不等式的性质进行判断.【解答】解:A、在不等式a>b的两边同时加上﹣,不等式仍成立,即a﹣>b﹣,故本选项错误;B、在不等式a>b的两边同时乘以﹣4,不等号的方向改变,即﹣4a<﹣4b,故本选项错误;C、在不等式a>b的两边同时乘以﹣2,不等号的方向改变,即﹣2a<﹣2b,再在不等式两边都加上1,不等号的方向不变,故本选项正确;D、当0>a>b是,不等式a2>b2不成立,故本选项错误;故选:C.【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.5.(3分)已知方程组的解满足x+y=2,则k的算术平方根为()A.4 B.﹣2 C.﹣4 D.2【分析】方程组中两方程相加表示出x+y,代入x+y=2中计算即可求出k的值.【解答】解:,①+②得:3(x+y)=k+2,解得:x+y=,代入x+y=2中得:k+2=6,解得:k=4,则4的算术平方根为2,故选D【点评】此题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值.6.(3分)把一块直尺与一块三角板如图放置,若∠1=40°,则∠2的度数为()A.125° B.120° C.140° D.130°【分析】根据矩形性质得出EF∥GH,推出∠FCD=∠2,代入∠FCD=∠1+∠A求出即可.【解答】解:∵EF∥GH,∴∠FCD=∠2,∵∠FCD=∠1+∠A,∠1=40°,∠A=90°,∴∠2=∠FCD=130°,故选D.【点评】本题考查了平行线性质,矩形性质,三角形外角性质的应用,关键是求出∠2=∠FCD和得出∠FCD=∠1+∠A.7.(3分)如图,在数轴上表示﹣1,﹣的对应点为A,B,若点A是线段BC的中点,则点C表示的数为()A.1﹣ B.2﹣ C.﹣1 D.﹣2【分析】设C表示的数是x,根据A是线段BC的中点,列出算式,求出x的值即可.【解答】解:设C表示的数是x,∵A=﹣1,B=﹣,∴=﹣1,∴x=﹣2.故选D.【点评】本题考查了实数与数轴、线段的中点.解题的关键是理解线段中点的含义.8.(3分)观察下列图形:它们是按一定的规律排列,依照此规律第n个图形共有()个五角星.A.1+n B.1+2n C.2+n D.1+3n【分析】仔细观察图形发现:每一个图形的最上面有一个五角星,下面五角星的个数是图形序列号的三倍,利用这一规律解题即可.【解答】解:根据规律可知:第一个图形中有1+1×3=3个★,第二个图形中有1+2×3=7个★,第三个图形中有1+3×3=10个★,…第n个图形共有(1+3n)个★.故选D.【点评】本题考查了图形的变化类问题,解决此类探究性问题,关键在观察、分析已知数据,寻找它们之间的相互联系,探寻其规律.9.(3分)如今中学生睡眠不足的问题正愈演愈烈,“缺觉”已是全国中学生们的老大难问题,教育部规定,初中生每天的睡眠时间应为9个小时,鹏鹏记录了他一周的睡眠时间,并将统计结果绘制成如图所示的折线统计图,则鹏鹏这一周的睡眠够9个小时的有()A.1天 B.2天 C.3天 D.4天【分析】根据折线统计图可以得到鹏鹏这一周的睡眠够9个小时的有几天.【解答】解:由统计图可知,周五、周六两天的睡眠够9个小时,故选B.【点评】本题考查折线统计图,解题的关键是明确题意,利用数形结合的思想解答问题.10.(3分)现有八个大小相同的长方形,可拼成如图①,②所示的图形,在拼图②时,中间留下了一个边长为2的小正方形,则每个小正方形的面积是()A.50 B.60 C.70 D.80【分析】设小长方形的长为x,宽为y,观察图形即可得出关于x、y的二元一次方程组,解之即可得出x、y的值,再根据长方形的面积公式即可得出每个小正方形的面积.【解答】解:设小长方形的长为x,宽为y,根据题意得:,解得:,∴xy=10×6=60.故选B.【点评】本题考查了二元一次方程组的应用,观察图形列出关于x、y的二元一次方程组是解题的关键.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)﹣3的相反数是3﹣.【分析】依据相反数的定义求解即可.【解答】解:﹣3的相反数是3﹣.故答案为:3﹣.【点评】本题主要考查的是相反数的定义,掌握相反数的定义是解题的关键.12.(3分)如果点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为(﹣3,4).【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【解答】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是﹣3,纵坐标是4,∴点P的坐标为(﹣3,4).故答案为:(﹣3,4).【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.13.(3分)一组数据的最大值为169,最小值为141,在绘制频数分布直方图时要求组据为6,则组数为5.【分析】由于一组数据的最大值为169,最小值为141,那么极差为169﹣141=28,而在绘制频数直方图时要求组距为6,那么根据它们即可求出组数.【解答】解:∵一组数据的最大值为169,最小值为141,∴最大值与最小值的差是169﹣143=28,而要求组距为6,∴28÷6=4,∴组数为5.故答案为:5.【点评】此题考查了组距、组数、极差之间的关系,要求学生会利用它们之间的关系熟练解决问题,确定组数是要注意只能取大,不能去小.14.(3分)若关于x的不等式组无解,则实数a的取值范围是a≥﹣4.【分析】先把a当作已知条件求出不等式组的解集,再与已知不等式组无解相比较即可得出实数a的取值范围.【解答】解:,由①得,x<﹣4,故此不等式组的解集为:a<x<﹣4,∵此不等式组无解,∴a≥﹣4.故答案为:a≥﹣4.【点评】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.15.(3分)如图1是长方形纸袋,∠DEF=α,将纸袋沿EF折叠成图2,在沿BF折叠成图3,用α表示图3中∠CFE的大小为180°﹣3α【分析】先根据矩形的性质得AD∥BC,则∠BFE=∠DEF=α,根据折叠的性质,把如图1中的方形纸袋沿EF折叠成图2,则∠MEF=α,把图2沿BF折叠成图3,则∠MFH=∠CFM,根据平行线的性质由FH∥MG得到∠MFH=180°﹣∠FMG,再利用三角形外角性质得∠FMG=∠MFE+∠MEF=2α,则∠MFH=180°﹣2α,所以∠CFM=180°﹣2α,然后利用∠CFE=∠CFM﹣∠EFM求解.【解答】解:在图1中,∵四边形ABCD为矩形,∴AD∥BC,∴∠BFE=∠DEF=α,∵如图1中的方形纸袋沿EF折叠成图2,∴∠MEF=α,∵图2再沿BF折叠成图3,∴在图3中,∠MFH=∠CFM,∵FH∥MG,∴∠MFH=180°﹣∠FMG,∵∠FMG=∠MFE+∠MEF=α+α=2α,∴∠MFH=180°﹣2α,∴∠CFM=180°﹣2α,∴∠CFE=∠CFM﹣∠EFM=180°﹣2α﹣α=180°﹣3α.故答案为:180°﹣3α.【点评】本题考查了折叠的性质:折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.也考查了矩形的性质.16.(3分)如图,AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=a°.则下列结论:①∠BOE=(180﹣a)°;②OF平分∠BOD;③∠POE=∠BOF;④∠POB=2∠DOF.其中正确结论①②③(填编号).【分析】由于AB∥CD,则∠ABO=∠BOD=40°,利用平角等于得到∠BOC=(180﹣a)°,再根据角平分线定义得到∠BOE=12(180﹣a)°;利用OF⊥OE,可计算出∠BOF=12a°,则∠BOF=12∠BOD,即OF平分∠BOD;利用OP⊥CD,可计算出∠POE=12a°,则∠POE=∠BOF;根据∠POB=90°﹣a°,∠DOF=12a°,可知④不正确.【解答】解:①∵AB∥CD,∴∠BOD=∠ABO=a°,∴∠COB=180°﹣a°=(180﹣a)°,又∵OE平分∠BOC,∴∠BOE=12∠COB=12(180﹣a)°.故①正确;②∵OF⊥OE,∴∠EOF=90°,∴∠BOF=90°﹣12(180﹣a)°=12a°,∴∠BOF=12∠BOD,∴OF平分∠BOD所以②正确;③∵OP⊥CD,∴∠COP=90°,∴∠POE=90°﹣∠EOC=12a°,∴∠POE=∠BOF;所以③正确;∴∠POB=90°﹣a°,而∠DOF=12a°,所以④错误.【点评】本题考查了平行线的性质:两直线平行,内错角相等;两直线平行,同旁内角互补;两直线平行,同位角相等.三、解答题:本大题共7小题,共52分.17.(5分)计算:||﹣+.【分析】本题涉及绝对值、二次根式化简、三次根式化简3个考点.在计算时,需要针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:||﹣+=2﹣﹣2+3=3﹣.【点评】本题主要考查了实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握绝对值、二次根式化简、三次根式化简等考点的运算.18.(5分)解方程组:.【分析】两个方程中,x或y的系数既不相等也不互为相反数,需要先求出x或y的系数的最小公倍数,即将方程中某个未知数的系数变成其最小公倍数之后,再进行加减.【解答】解:,②×2﹣①得:5y=15,y=3,把y=3代入②得:x=5,∴方程组的解为.【点评】此题考查的知识点是解二元一次方程组,关键是用加减加减消元法解方程组时,将方程中某个未知数的系数变成其最小公倍数之后,再进行相加减.本题也可以用代入法求解.19.(6分)解不等式组:,并把解集在数轴上表示出来.【分析】分别求出不等式组中两不等式的解集,找出公共部分,表示在数轴上即可.【解答】解:,由①得:x>﹣2,由②得:x≤2,∴不等式组的解集为:﹣2<x≤2,【点评】此题考查了解一元一次不等式组,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.20.(8分)如图,先将三角形ABC向左平移3个单位长度,再向下平移4个单位长度,得到三角形A1B1C1.(1)画出经过两次平移后的图形,并写出A1,B1,C1的坐标;(2)已知三角形ABC内部一点P的坐标为(a,b),若点P随三角形ABC一起平移,请写出平移后点P的对应点P1的坐标;(3)求三角形ABC的面积.【分析】(1)利用点平移的规律写出A1,B1,C1的坐标,然后描点可得△A1B1C1;(2)利用点平移的规律,平移后的对应点的横坐标减3,纵坐标减4,于是可得P1(a﹣3,b﹣4);(3)根据三角形面积公式,利用一个矩形的面积分别减去三个三角形的面积可求出三角形ABC的面积.【解答】解:(1)如图,△A1B1C1为所作,点A1,B1,C1的坐标分别为(﹣4,﹣3),(1,﹣2),(﹣1,1);(2)平移后点P的对应点P1的坐标为(a﹣3,b﹣4);(3)△ABC的面积=4×5﹣×6×1﹣×3×3﹣×4×3=6.5.【点评】本题考查了作图﹣平移变换:确定平移后图形的基本要素(平移方向、平移距离).作图时要先找到图形的关键点,分别把这几个关键点按照平移的方向和距离确定对应点后,再顺次连接对应点即可得到平移后的图形.21.(8分)某校体育组对本校九年级全体同学体育测试情况进行调查,他们随机抽查部分同学体育测试成绩(由高到低分四个等级),根据调查的数据绘制成如下的条形统计图和扇形统计图.请根据以上不完整的统计图提供的信息,解答下列问题:(1)该课题研究小组共抽查了80名同学的体育测试成绩,扇形统计图中B级所占的百分比b=40%;(2)补全条形统计图;(3)若该校九年级共有200名同学,请估计该校九年级同学体育测试达标(测试成绩C级以上,含C级)均有190名.【分析】(1)由等级A的人数除以所占的百分比求出调查的总学生;进一步求出B占的百分比;(2)求出C级的学生数,补全条形统计图即可;(3)求出A,B,C的百分比之和,乘以600即可得到结果.【解答】解:(1)根据题意得:20÷25%=80(人),B占的百分比为×100%=40%;(2)C级的人数为80﹣(20+32+4)=24(人),补全条形图,如图所示:(3)根据题意得:200×=190(人),则估计该校九年级同学体育测试达标的人数约为190人.【点评】此题考查了条形统计图,扇形统计图,以及用样本估计总体,弄清题意,从统计图中得到必要的信息是解决问题的关键.22.(10分)某公司有A、B两种型号的客车共15辆,它们的载客量,每天的租金和车辆数如下表所示,已知在15辆客车都坐满的情况下,共载客570人A型号客车B型号客车载客量(人/辆)4530租金(元/辆)400280车辆数(辆)ab(1)求表中a,b的值;(2)某中学计划租用A、B两种型号的客车共5辆,同时送七年级师生到基地参加社会实践活动,已知该中学租车的总费用不超过1900元.①求最多能租用多少辆A型号客车?②若七年级的师生共有195人,请写出所有可能的租车方案,并确定最省钱的租车方案.【分析】(1)利用客车的总数为15和在15辆客车都坐满的情况下,共载客570人可列方程组,然后解方程即可得到a和b的值;(2)①设计划租用A种型号的客车x辆,则计划租用B种型号的客车(5﹣x)辆,利用该中学租车的总费用不超过1900元可列不等式400x+280(5﹣x)≤1900,然后解不等式,利用x为正整数,求出此解集中最大的正整数即可;②利用两种客车的人数不少于195列不等式得到+30(5﹣x)≥195,解得x≥3,加上x≤4,于是得到x=3,4,然后写出两个方案,通过计算两方案的费用得到最省钱的租车方案【解答】解:(1)由题意得,解得;(2)①设计划租用A种型号的客车x辆,则计划租用B种型号的客车(5﹣x)辆,根据题意得400x+280(5﹣x)≤1900,解得x≤4,因为x取非负整数,所以x的最大值为4,答:最多能租用4辆A型号客车;②根据题意得45x+30(5﹣x)≥195,解得x≥3,而x≤4,所以3≤x≤4,因为x为正整数,所以x=3,4,所有可能的租车方案为方案一:租用A种型号的客车3辆,租用B种型号的客车2辆,此时费用为3×400+2×280=1760(元)方案二:租用A种型号的客车4辆,租用B种型号的客车1辆;此时费用为4×400+1×280=1880(元)所以最省钱的租车方案为租用A种型号的客车3辆,租用B种型号的客车2辆.【点评】本题考查了一元一次不等式的应用:由实际问题中的不等关系列出不等式,建立解决问题的数学模型,通过解不等式可以得到实际问题的答案.23.(10分)如图1,直线MN与直线AB、CD分别交于点E、F,∠1与∠2互补.(1)试判断直线AB与直线CD的位置关系,并说明理由;(2)如图2,∠BEF与∠EFD的角平分线交于点P,EP与CD交于点G,点H是MN上一点,且GH⊥EG,求证:PF∥GH;(3)如图3,在(2)的条件下,连接PH,K是GH上一点使∠PHK=∠HPK,作PQ平分∠EPK,问∠HPQ的大小是否发生变化?若不变,请求出其值;若变化,说明理由.【分析】(1)利用对顶角相等、等量代换可以推知同旁内角∠AEF、∠CFE互补,所以易证AB∥CD;(2)利用(1)中平行线的性质推知°;然后根据角平分线的性质、三角形内角和定理证得∠EPF=90°,即EG⊥PF,故结合已知条件GH⊥EG,易证PF∥GH;(3)利用三角形外角定理、三角形内角和定理求得∠4=90°﹣∠3=90°﹣2∠2;然后由邻补角的定义、角平分线的定义推知∠QPK=∠EPK=45°+∠2;最后根据图形中的角与角间的和差关系求得∠HPQ的大小不变,是定值45°.【解答】解:(1)如图1,∵∠1与∠2互补,∴∠1+∠2=180°.又∵∠1=∠AEF,∠2=∠CFE,∴∠AEF+∠CFE=180°,∴AB∥CD;(2)如图2,由(1)知,AB∥CD,∴∠BEF+∠EFD=180°.又∵∠BEF与∠EFD的角平分线交于点P,∴∠FEP+∠EFP=(∠BEF+∠EFD)=90°,∴∠EPF=90°,即EG⊥PF.∵GH⊥EG,∴PF∥GH;(3)∠HPQ的大小不发生变化,理由如下:如图3,∵∠1=∠2,∴∠3=2∠2.又∵GH⊥EG,∴∠4=90°﹣∠3=90°﹣2∠2.∴∠EPK=180°﹣∠4=90°+2∠2.∵PQ平分∠EPK,∴∠QPK=∠EPK=45°+∠2.∴∠HPQ=∠QPK﹣∠2=45°,∴∠HPQ的大小不发生变化,一直是45°.【点评】本题考查了平行线的判定与性质.解题过程中,注意“数形结合”数学思想的运用.人教版七年级下学期期末考试数学试卷(四)一、选择题(本大题共10小题,每小题4分,共40分)1.(4分)下列四个实数中,无理数是()A.0 B. C.﹣2 D.2.(4分)解为的方程组是()A. B.C. D.3.(4分)若m>﹣1,则下列各式中错误的是()A.6m>﹣6 B.﹣5m<﹣5 C.m+1>0 D.1﹣m<24.(4分)已知a>b>0,那么下列不等式组中无解的是()A. B. C. D.5.(4分)下列命题中的真命题是()A.经过一点有且只有一条直线与已知直线平行B.任何一个角都有一个余角和一个补角C.同位角相等D.互补的两个角不能都大于90°6.(4分)如图,已知直线a∥b,∠1=40°,∠2=60°.则∠3等于()A.100° B.60° C.40° D.20°7.(4分)下列调查中,调查方式选择合理的是()A.为了解全省中学生的课外阅读情况,选择全面调查B.为了解某一品牌家具的甲醛含量,选择抽样调查C.为了解一批袋装食品是否含有防腐剂,选择全面调查D.某企业招聘员工,对应聘人员进行面试,选择抽样调查8.(4分)课间操时,小华、小军、小刚的位置如图1,小华对小刚说,如果我的位置用(0,0)表示,小军的位置用(2,1)表示,那么你的位置可以表示成()A.(5,4) B.(4,5) C.(3,4) D.(4,3)9.(4分)下列说法错误的是()A.对顶角相等B.在连接直线外一点与直线上各点的线段中,垂线段最短C.如果两个角和是180度,那么这两个角是邻补角D.一个图形和它经过平移后所得的图形中,两组对应点连接的线段平行或在同一条直线上10.(4分)如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别在边AB,AC上,将△ABC沿着DE折叠压平,A与A′重合,若∠A=65°,则∠1+∠2=()A.210° B.130° C.115° D.65°二、填空题(本大

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论