




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
./二次函数的图像与性质一、二次函数的基本形式1.二次函数基本形式:的性质:a的绝对值越大,抛物线的开口越小。的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.2.的性质:上加下减。的符号开口方向顶点坐标对称轴性质向上轴时,随的增大而增大;时,随的增大而减小;时,有最小值.向下轴时,随的增大而减小;时,随的增大而增大;时,有最大值.3.的性质:左加右减。的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.4.的性质:的符号开口方向顶点坐标对称轴性质向上X=h时,随的增大而增大;时,随的增大而减小;时,有最小值.向下X=h时,随的增大而减小;时,随的增大而增大;时,有最大值.二、二次函数图象的平移1.平移步骤:方法一:⑴将抛物线解析式转化成顶点式,确定其顶点坐标;⑵保持抛物线的形状不变,将其顶点平移到处,具体平移方法如下:2.平移规律在原有函数的基础上"值正右移,负左移;值正上移,负下移".概括成八个字"左加右减,上加下减".方法二:⑴沿轴平移:向上〔下平移个单位,变成〔或⑵沿轴平移:向左〔右平移个单位,变成〔或三、二次函数与的比较从解析式上看,与是两种不同的表达形式,后者通过配方可以得到前者,即,其中.四、二次函数图象的画法五点绘图法:利用配方法将二次函数化为顶点式,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与轴的交点、以及关于对称轴对称的点、与轴的交点,〔若与轴没有交点,则取两组关于对称轴对称的点.画草图时应抓住以下几点:开口方向,对称轴,顶点,与轴的交点,与轴的交点.五、二次函数的性质1.当时,抛物线开口向上,对称轴为,顶点坐标为.当时,随的增大而减小;当时,随的增大而增大;当时,有最小值.2.当时,抛物线开口向下,对称轴为,顶点坐标为.当时,随的增大而增大;当时,随的增大而减小;当时,有最大值.六、二次函数解析式的表示方法1.一般式:〔,,为常数,;2.顶点式:〔,,为常数,;3.两根式:〔,,是抛物线与轴两交点的横坐标.注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与轴有交点,即时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1.二次项系数二次函数中,作为二次项系数,显然.⑴当时,抛物线开口向上,的值越大,开口越小,反之的值越小,开口越大;⑵当时,抛物线开口向下,的值越小,开口越小,反之的值越大,开口越大.总结起来,决定了抛物线开口的大小和方向,的正负决定开口方向,的大小决定开口的大小.2.一次项系数在二次项系数确定的前提下,决定了抛物线的对称轴.⑴在的前提下,当时,,即抛物线的对称轴在轴左侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的右侧.⑵在的前提下,结论刚好与上述相反,即当时,,即抛物线的对称轴在轴右侧;当时,,即抛物线的对称轴就是轴;当时,,即抛物线对称轴在轴的左侧.总结起来,在确定的前提下,决定了抛物线对称轴的位置.的符号的判定:对称轴在轴左边则,在轴的右侧则,概括的说就是"左同右异"总结:3.常数项⑴当时,抛物线与轴的交点在轴上方,即抛物线与轴交点的纵坐标为正;⑵当时,抛物线与轴的交点为坐标原点,即抛物线与轴交点的纵坐标为;⑶当时,抛物线与轴的交点在轴下方,即抛物线与轴交点的纵坐标为负.总结起来,决定了抛物线与轴交点的位置.总之,只要都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1.已知抛物线上三点的坐标,一般选用一般式;2.已知抛物线顶点或对称轴或最大〔小值,一般选用顶点式;3.已知抛物线与轴的两个交点的横坐标,一般选用两根式;4.已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达1.关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;2.关于轴对称关于轴对称后,得到的解析式是;关于轴对称后,得到的解析式是;3.关于原点对称关于原点对称后,得到的解析式是;关于原点对称后,得到的解析式是;4.关于顶点对称〔即:抛物线绕顶点旋转180°关于顶点对称后,得到的解析式是;关于顶点对称后,得到的解析式是.5.关于点对称关于点对称后,得到的解析式是根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线〔或表达式已知的抛物线的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、[例题精讲]一、一元二次函数的图象的画法[例1]求作函数的图象[解]以为中间值,取的一些值,列表如下:…-7-6-5-4-3-2-1……0-20…[例2]求作函数的图象。[解]先画出图角在对称轴的右边部分,列表-2-101276543[点评]画二次函数图象步骤:<1>配方;<2>列表;<3>描点成图;也可利用图象的对称性,先画出函数的左〔右边部分图象,再利用对称性描出右〔左部分就可。二、一元二次函数性质[例3]求函数的最小值及图象的对称轴和顶点坐标,并求它的单调区间。[解]由配方结果可知:顶点坐标为,对称轴为;∴当时,函数在区间上是减函数,在区间上是增函数。[例4]求函数图象的顶点坐标、对称轴、最值。,∴函数图象的顶点坐标为,对称轴为∴当时,函数取得最大值函数在区间上是增函数,在区间上是减函数。[点评]要研究二次函数顶点、对称轴、最值、单调区间等性质时,方法有两个:配方法;如例3公式法:适用于不容易配方题目<二次项系数为负数或分数>如例4,可避免出错。任何一个函数都可配方成如下形式:[二次函数题型总结]1.关于二次函数的概念例1如果函数是二次函数,那么m的值为。例2抛物线的开口方向是;对称轴是;顶点为。-1-1OX=1YX2.关于二次函数的性质及图象例3函数的图象如图所示,则a、b、c,,,的符号为,例4已知a-b+c=09a+3b+c=0,则二次函数y=ax2+bx+c的图像的顶点可能在〔第一或第二象限〔B第三或第四象限〔C第一或第四象限〔D第二或第三象限3o3o-13yx例5已知:函数的图象如图:那么函数解析式为〔〔A〔B〔C〔D4.一次函数图像与二次函数图像综合考查例6已知一次函数y=ax+c二次函数y=ax2+bx+c<a≠0>,它们在同一坐标系中的大致图象是<>.例7如图:△ABC是边长为4的等边三角形,AB在X轴上,点C在第一象限,AC与Y轴交于点D,点A的坐标为〔-1,0〔1求B、C、D三点的坐标;〔2抛物线经过B、C、D三点,求它的解析式;[练习题]一、选择题1.二次函数的顶点坐标是<>A.<2,-11>B.〔-2,7C.〔2,11D.〔2,-32.把抛物线向上平移1个单位,得到的抛物线是〔A.B.C.D.3.函数和在同一直角坐标系中图象可能是图中的<>4.已知二次函数的图象如图所示,则下列结论:①a,b同号;②当和时,函数值相等;③④当时,的值只能取0.其中正确的个数是<>A.1个B.2个C.3个D.4个5.已知二次函数的顶点坐标〔-1,-3.2及部分图象<如图>,由图象可知关于的一元二次方程的两个根分别是〔A.-1.3B.-2.3C.-0.3D.-3.36.已知二次函数的图象如图所示,则点在〔A.第一象限B.第二象限C.第三象限D.第四象限7.方程的正根的个数为〔A.0个B.1个C.2个.3个8.已知抛物线过点A<2,0>,B<-1,0>,与轴交于点C,且OC=2.则这条抛物线的解析式为A.B.C.或D.或二、填空题9.二次函数的对称轴是,则_______。10.已知抛物线y=-2〔x+3²+5,如果y随x的增大而减小,那么x的取值范围是_______.11.一个函数具有下列性质:①图象过点〔-1,2,②当<0时,函数值随自变量的增大而增大;满足上述两条性质的函数的解析式是〔只写一个即可。12.抛物线的顶点为C,已知直线过点C,则这条直线与两坐标轴所围成的三角形面积为。13.二次函数的图象是由的图象向左平移1个单位,再向下平移2个单位得到的,则b=,c=。14.如图,一桥拱呈抛物线状,桥的最大高度是16米,跨度是40米,在线段AB上离中心M处5米的地方,桥的高度是<π取3.14>.三、解答题:第15题图15.已知二次函数图象的对称轴是,图象经过<1,-6>,且与轴的交点为<0,>.第15题图<1>求这个二次函数的解析式;<2>当x为何值时,这个函数的函数值为0?<3>当x在什么范围内变化时,这个函数的函数值随x的增大而增大?16.某种爆竹点燃后,其上升高度h〔米和时间t〔秒符合关系式〔0<t≤2,其中重力加速度g以10米/秒2计算.这种爆竹点燃后以v0=20米/秒的初速度上升,〔1这种爆竹在地面上点燃后,经过多少时间离地15米?〔2在爆竹点燃后的1.5秒至1.8秒这段时间内,判断爆竹是上升,或是下降,并说明理由.17.如图,抛物线经过直线与坐标轴的两个交点A、B,此抛物线与轴的另一个交点为C,抛物线顶点为D.〔1求此抛物线的解析式;〔2点P为抛物线上的一个动点,求使:5:4的点P的坐标。一,选择题、1.A2.C3.A4.B5.D6.B7.C8.C二、填空题、9.10.<-311.如等〔答案不唯一12.113.-8714.15三、解答题15.<1>设抛物线的解析式为,由题意可得解得所以<2>或-
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025绿化苗木购销合同简化版
- 小区消防宿舍管理制度
- 医院支付流程管理制度
- 公司协调部门管理制度
- 垃圾收集处置管理制度
- 医疗公司值班管理制度
- 学校节约用餐管理制度
- 对外合作中心建议书征询文件范本-简单版本
- 公司拉帮结派管理制度
- 山东寄宿住宿管理制度
- (2025)纪检监察业务知识考试题及含答案
- 网络安全技术实操技能考核试题及答案
- 国家保安员模拟试题及答案(附解析)
- (正式版)HGT 6313-2024 化工园区智慧化评价导则
- 《分析化学》期末考试试卷(A)及答案
- 烧烤店菜单模板
- GMP基础知识(新员工培训)
- LGJ钢芯铝绞线参数
- 机械加工工艺卡片实例(共12页)
- 油库安全点检表
- 金属材料力学性能检测样品制样作业指导书
评论
0/150
提交评论