平凉市重点中学2024届高一上数学期末学业水平测试试题含解析_第1页
平凉市重点中学2024届高一上数学期末学业水平测试试题含解析_第2页
平凉市重点中学2024届高一上数学期末学业水平测试试题含解析_第3页
平凉市重点中学2024届高一上数学期末学业水平测试试题含解析_第4页
平凉市重点中学2024届高一上数学期末学业水平测试试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

平凉市重点中学2024届高一上数学期末学业水平测试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1.已知角的终边与单位圆相交于点,则=()A. B.C. D.2.函数的单调递减区间为A. B.C. D.3.若,则是第()象限角A.一 B.二C.三 D.四4.如图,正方体的棱长为1,线段上有两个动点E、F,且,则下列结论中错误的是A.B.C.三棱锥体积为定值D.5.某数学老师记录了班上8名同学的数学考试成绩,得到如下数据:90,98,100,108,111,115,115,125.则这组数据的分位数是()A.100 B.111C.113 D.1156.零点所在的区间是()A. B.C. D.7.下列关于函数的说法不正确的是()A.在区间上单调递增B.最小正周期是2C.图象关于直线轴对称D.图象关于点中心对称8.已知正实数满足,则最小值为A. B.C. D.9.已知函数,则()A.2 B.5C.7 D.910.函数是奇函数,则的值为A.0 B.1C.-1 D.不存在11.设,,,则a,b,c的大小关系是()A. B.C. D.12.下列函数中既是奇函数,又是减函数的是()A. B.C D.二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13.已知函数满足,当时,,若不等式的解集是集合的子集,则a的取值范围是______14.已知关于x的不等式的解集为,则的解集为_________15.函数=(其中且)的图象恒过定点,且点在幂函数的图象上,则=______.16.若函数在区间内为减函数,则实数a的取值范围为___________.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17.已知函数(,且)(1)若函数的图象过点,求b的值;(2)若函数在区间上的最大值比最小值大,求a的值18.已经函数(Ⅰ)函数的图象可由函数的图象经过怎样变化得出?(Ⅱ)求函数的最小值,并求使用取得最小值的的集合19.在平面直角坐标系中,设二次函数的图像与两坐标轴有三个交点,经过这三点的圆记为(1)求圆的方程;(2)若过点的直线与圆相交,所截得的弦长为4,求直线的方程.20.已知函数,.(1)若的定义域为,求实数的取值范围;(2)若,函数为奇函数,且对任意,存在,使得,求实数的取值范围.21.某果农从经过筛选(每个水果的大小最小不低于50克,最大不超过100克)的10000个水果中抽取出100个样本进行统计,得到如下频率分布表:级别大小(克)频数频率一级果50.05二级果三级果35四级果30五级果20合计100请根据频率分布表中所提供的数据,解得下列问题:(1)求的值,并完成频率分布直方图;(2)若从四级果,五级果中按分层抽样的方法抽取5个水果,并从中选出2个作为展品,求2个展品中仅有1个是四级果的概率;(3)若将水果作分级销售,预计销售的价格元/个与每个水果的大小克关系是:,则预计10000个水果可收入多少元?22.已知函数(I)若是第一象限角,且.求的值;(II)求使成立的x的取值集合

参考答案一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)1、C【解析】先利用三角函数的定义求角的正、余弦,再利用二倍角公式计算即可.【详解】角的终边与单位圆相交于点,故,所以,故.故选:C.2、A【解析】根据所给的二次函数的二次项系数大于零,得到二次函数的图象是一个开口向上的抛物线,根据对称轴,考查二次函数的变化区间,得到结果【详解】解:函数的二次项的系数大于零,抛物线的开口向上,二次函数的对称轴是,函数的单调递减区间是故选A【点睛】本题考查二次函数的性质,属于基础题3、C【解析】由终边位置可得结果.【详解】,终边落在第三象限,为第三象限角.故选:C.4、D【解析】可证,故A正确;由∥平面ABCD,可知,B也正确;连结BD交AC于O,则AO为三棱锥的高,,三棱锥的体积为为定值,C正确;D错误.选D5、D【解析】根据第p百分位数的定义直接计算,再判断作答.【详解】由知,这组数据的分位数是按从小到大排列的第6个位置的数,所以这组数据的分位数是115.故选:D6、C【解析】利用零点存在定理依次判断各个选项即可.【详解】由题意知:在上连续且单调递增;对于A,,,内不存在零点,A错误;对于B,,,内不存在零点,B错误;对于C,,,则,内存在零点,C正确;对于D,,,内不存在零点,D错误.故选:C.7、D【解析】结合三角函数的性质,利用整体代换思想依次讨论各选项即可得答案.【详解】当时,,此时函数为增函数,所以函数在区间上单调递增,A选项正确;由函数周期公式,B选项正确;当时,,由于是的对称轴,故直线是函数的对称轴,C选项正确.当时,,由于是的对称轴,故不是函数的中心对称,D选项错误;故选:D.8、A【解析】由题设条件得,,利用基本不等式求出最值【详解】由已知,,所以当且仅当时等号成立,又,所以时取最小值故选A【点睛】本题考查据题设条件构造可以利用基本不等式的形式,利用基本不等式求最值9、D【解析】先求出,再求即可,【详解】由题意得,所以,故选:D10、C【解析】由题意得,函数是奇函数,则,即,解得,故选C.考点:函数的奇偶性的应用.11、C【解析】根据幂函数和指数函数的单调性比较判断【详解】∵,,∴.故选:C12、A【解析】根据对数、指数、一次函数的单调性判断BCD,根据定义判断的奇偶性.【详解】因为在定义域内都是增函数,所以BCD错误;因为,所以函数为奇函数,且在上单调递减,A正确.故选:A二、选择题(本大题共4小题,每小题5分,共20分,将答案写在答题卡上.)13、【解析】先由已知条件判断出函数的单调性,再把不等式转化为整式不等式,再利用子集的要求即可求得a的取值范围.【详解】由可知,关于对称,又,当时,单调递减,故不等式等价于,即,因为不等式解集是集合的子集,所以,解得故答案为:14、或【解析】由已知条件知,结合根与系数关系可得,代入化简后求解,即可得出结论.【详解】关于x的不等式的解集为,可得,方程的两根为,∴,所以,代入得,,即,解得或.故答案为:或.【点睛】本题考查一元二次不等式与一元二次方程的关系,以及解一元二次不等式,属于基础题.易错点是忽视对的符号的判断.15、9【解析】由题意知,当时,.即函数=的图象恒过定点.而在幂函数的图象上,所以,解得,即,所以=9.16、【解析】由复合函数单调性的判断法则及对数函数的真数大于0恒成立,列出不等式组求解即可得答案.【详解】解:因为,函数在区间内为减函数,所以有,解得,所以实数a的取值范围为,故答案为:.三、解答题(本大题共6个小题,共70分。解答时要求写出必要的文字说明、证明过程或演算步骤。)17、(1)1(2)或【解析】(1)将点坐标代入求出b的值;(2)分与两种情况,根据函数单调性表达出最大值和最小值,列出方程,求解a的值.【小问1详解】,解得.【小问2详解】当时,在区间上单调递减,此时,,所以,解得:或0(舍去);当时,在区间上单调递增,此时,,所以,解得:或0(舍去).综上:或18、(Ⅰ)答案见解析;(Ⅱ)最小值,对应的x的集合为.【解析】(Ⅰ)由二倍角公式降幂后,用诱导公式化正弦函数,再由图象平移得结论;(Ⅱ)利用两角和的余弦公式化函数为一个角的余弦型函数,利用余弦函数的性质得最值【详解】解:(Ⅰ),所以要得到的图象只需要把的图象向左平移个单位长度,再将所得的图象向上平移个单位长度即可.(Ⅱ).当2x+=2k+时,h(x)取得最小值.取得最小值时,对应的x的集合为.19、(1);(2)或【解析】(1)先求得圆三个交点,,由和的垂直平分线得圆心,进而得半径;(2)易得圆心到直线的距离为1,讨论直线斜率不存在和存在时,利用圆心到直线的距离求解即可.试题解析:二次函数的图像与两坐标轴轴的三个交点分别记为(1)线段的垂直平分线为,线段的垂直平分线,两条中垂线的交点为圆心,又半径,∴圆的方程为:(2)已知圆的半径,弦长为4,所以圆心到直线的距离为1,若直线斜率不存在时,即时,满足题意;当直线斜率存在时,设直线斜率存在为,直线方程为,此时直线方程为:,所以直线的方程为:或.点睛:直线与圆的位置关系常用处理方法:(1)直线与圆相切处理时要利用圆心与切点连线垂直,构建直角三角形,进而利用勾股定理可以建立等量关系;(2)直线与圆相交,利用垂径定理也可以构建直角三角形;(3)直线与圆相离时,当过圆心作直线垂线时长度最小20、(1);(2).【解析】(1)由函数的定义域为,得到恒成立,即恒成立,分类讨论,即可求解.(2)根据题意,转化为,利用单调性的定义,得到在R上单调递增,求得,得出恒成立,得出恒成立,分类讨论,即可求解.【详解】(1)由函数定义域为,即恒成立,即恒成立,当时,恒成立,因为,所以,即;当时,显然成立;当时,恒成立,因为,所以,综上可得,实数的取值范围.(2)由对任意,存在,使得,可得,设,因为,所以,同理可得,所以,所以,可得,即,所以在R上单调递增,所以,则,即恒成立,因为,所以恒成立,当时,恒成立,因为,当且仅当时等号成立,所以,所以,解得,所以;当时,显然成立;当时,恒成立,没有最大值,不合题意,综上,实数的取值范围.【点睛】利用函数求解方程的根的个数或研究不等式问题的策略:1、利用函数的图象研究方程的根的个数:当方程与基本性质有关时,可以通过函数图象来研究方程的根,方程的根就是函数与轴的交点的横坐标,方程的根据就是函数和图象的交点的横坐标;2、利用函数研究不等式:当不等式问题不能用代数法求解但其与函数有关时,常将不等式问题转化为两函数图象的上、下关系问题,从而利用数形结合求解.21、(1)的值为10,的值为0.35;作图见解析(2)(3)元【解析】(1)根据样本总数为可求,由频数样本总数可求;计算出各组频率,再计算出频率/组距即可画出频率分布直方图.(2)根据分层抽样可得抽取的4级有个,抽取5级果有个,设三个四级果分别记作:,二个五级果分别记作:,利用古典概型的概率计算公式即可求解.(3)计算出100个水果的收入即可预计10000个水果可收入.【详解】(1)的值为10,的值为0.35(2)四级果有30个,五级果有20个,按分层抽样的方法抽取5个水果,则抽取的4级果有个,5级果有个.设三个四级果分别记作:,二个五级果分别记作:,从中任选二个作为展品的所有可能结果是,共有10种,其中两个展品中仅有一个是四级果的事件为,包含共个,所求的概率为.(3)100个水果的收入为(元)所以10000个水果预计可收入(元).【点睛】本题考查了频率分布表、频率分布直方图、分层抽样以及古典概型的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论