山东省济南市平阴县2023年八年级数学第一学期期末检测模拟试题含解析_第1页
山东省济南市平阴县2023年八年级数学第一学期期末检测模拟试题含解析_第2页
山东省济南市平阴县2023年八年级数学第一学期期末检测模拟试题含解析_第3页
山东省济南市平阴县2023年八年级数学第一学期期末检测模拟试题含解析_第4页
山东省济南市平阴县2023年八年级数学第一学期期末检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省济南市平阴县2023年八年级数学第一学期期末检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.已知等腰三角形的两条边长分别为2和3,则它的周长为()A.7 B.8 C.5 D.7或82.在折纸活动中,王强做了一张△ABC纸片,点D,E分别是AB,AC上的点,将△ABC沿着DE折叠压平,A与A1重合,且∠A1DB=90°,若∠A=50°,则∠CEA1等于()A.20° B.15° C.10° D.5°3.如图,中,,的垂直平分线交于,交于,平分,则的度数为()A.30° B.32° C.34° D.36°4.如图,在RtΔABC中,∠ACB=90°,BD是∠ABC的角平分线交AC于点D,DE⊥AB于E①DE=DC②BE=BC③AD=DC④ΔBDE≅ΔBDCA.1个 B.2个 C.3个 D.4个5.若是完全平方式,则的值为()A.-5或7 B. C.13或-11 D.11或-136.下列各数中,无理数是()A.π B.4 C.227 D.7.如图,,,则图中等腰三角形的个数是()A.5 B.6 C.8 D.98.甲种防腐药水含药30%,乙种防腐药水含药75%,现用这两种防腐药水配制含药50%的防腐药水18千克,两种药水各需要多少千克?设甲种药水需要x千克,乙种药水需要y千克,则所列方程组正确的是()A. B.C. D.9.已知,则与的关系是()A. B. C. D.10.如图,△ABC中∠ACB=90°,CD是AB边上的高,∠BAC的角平分线AF交CD于E,则△CEF必为()A.等腰三角形 B.等边三角形 C.直角三角形 D.等腰直角三角形二、填空题(每小题3分,共24分)11.已知是方程3x﹣my=7的一个解,则m=.12.将用四舍五入法精确到为__________.13.若的整数部分为,则满足条件的奇数有_______个.14.因式分解:3xy﹣6y=_____.15.如图,CD是的角平分线,于E,,的面积是9,则的面积是_____.16.函数的定义域是__________.17.如果关于x的一元二次方程没有实数根,那么m的取值范围是_____________.18.(-2a-3b)(2a-3b)=__________.三、解答题(共66分)19.(10分)用消元法解方程组时,两位同学的解法如下:解法一:解法二:由②,得,③由①-②,得.把①代入③,得.(1)反思:上述两个解题过程中有无计算错误?若有误,请在错误处打“”.(2)请选择一种你喜欢的方法,完成解答.20.(6分)如图AM∥BN,C是BN上一点,BD平分∠ABN且过AC的中点O,交AM于点D,DE⊥BD,交BN于点E.(1)求证:△ADO≌△CBO.(2)求证:四边形ABCD是菱形.(3)若DE=AB=2,求菱形ABCD的面积.21.(6分)如图,在▱ABCD中,G是CD上一点,连接BG且延长交AD的延长线于点E,AF=CG,∠E=30°,∠C=50°,求∠BFD的度数.22.(8分)如图,在中,∠CAB=90°,AC=AB,射线AM与CB交于H点,分别过C点、B点作CF⊥AM,BE⊥AM,垂足分别为F点和E点.(1)若AF=4,AE=1,请求出AB的长;(2)若D点是BC中点,连结FD,求证:BE=DF+CF.23.(8分)某校对全校3000名学生本学期参加艺术学习活动的情况进行评价,其中甲班学生本学期参观美术馆的次数以及艺术评价等级和艺术赋分的统计情况,如下表所示:图(1)图(2)(1)甲班学生总数为______________人,表格中的值为_____________;(2)甲班学生艺术赋分的平均分是______________分;(3)根据统计结果,估计全校3000名学生艺术评价等级为级的人数是多少?24.(8分)为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.25.(10分)对于两个不相等的实数心、,我们规定:符号表示、中的较大值,如:.按照这个规定,求方程(为常数,且)的解.26.(10分)已知,如图,EF⊥AC于F,DB⊥AC于M,∠1=∠2,∠3=∠C,求证:AB∥MN.

参考答案一、选择题(每小题3分,共30分)1、D【解析】试题分析:当底为2时,腰为3,周长=2+3+3=8;当底为3时,腰为2,周长=3+2+2=7.考点:等腰三角形的性质.2、C【分析】根据翻折变换的性质可得∠A1DE=∠ADE,∠A1ED=∠AED,再根据三角形的内角和等于180°求出∠A1ED和∠AED,然后利用平角等于180°即可求解∠CEA1.【详解】解:∵△ABC沿着DE折叠压平,A与A1重合,且∠A1DB=90°,∴∠A1DE=∠ADE=,∠A1ED=∠AED,∵∠A=50°,∴∠A1ED=∠AED=,∴∠CEA1=.故选:C.【点睛】本题考查三角形的内角和定理,翻折变换的性质,熟练进行整体思想的利用使得求解更简便.3、D【分析】根据,则∠ABC=∠C,由垂直平分线和角平分线的性质,得到∠ABC=∠C=2∠A,根据三角形内角和定理,即可得到答案.【详解】解:∵,∴∠ABC=∠C,∵平分,∴,∵DE垂直平分AB,∴,∴∠ABC=∠C=2∠A,∵∠ABC+∠C+∠A=180°,∴,∴.故选:D.【点睛】本题考查了三角形内角和定理和等腰三角形性质、线段垂直平分线性质的应用,以及角平分线的性质.注意:线段垂直平分线上的点到线段两个端点的距离相等.4、C【分析】根据角平分线性质,即可得到DE=DC;根据全等三角形的判定与性质,即可得到BE=BC,△BDE≌△BDC.【详解】解:∵∠ACB=90°,BD是∠ABC的角平分线,DE⊥AB,

∴DE=DC,故①正确;

又∵∠C=∠BEC=90°,BD=BD,

∴Rt△BCD≌Rt△BED(HL),故④正确;

∴BE=BC,故②正确;

∵Rt△ADE中,AD>DE=CD,

∴AD=DC不成立,故③错误;

故选C.【点睛】本题主要考查了全等三角形的判定与性质,全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.5、C【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:∵9x2-2(k-1)x+16=(3x)2-2(k-1)x+42,

∵9x2-2(k-1)x+16是完全平方式,∴-2(k-1)x=±2×3x×4,

解得k=13或k=-1.

故选:C.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.6、A【解析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.π是无理数;B.4=2,是有理数;C.227是有理数;D.38=2,是有理数故选:A.【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.7、C【详解】解:∵,∴∴,∴△ABC,△ABD,△ACE,△BOC,∴△BEO,△CDO,△BCD,△CBE是等腰三角形.∴图中的等腰三角形有8个.故选D.8、A【解析】根据等量关系:甲种防腐药水+乙种防腐药水=18千克,甲种防腐药+乙种防腐药=18×50%千克,可得出关于x、y的二元一次方程组,解之即可得出结论.【详解】由题意得:.故选A.【点睛】本题考查由实际问题抽象出二元一次方程组,根据数量关系找出关于x、y的二元一次方程是解题关键.9、C【分析】将a分母有理化,然后求出a+b即可得出结论.【详解】解:∴∴故选C.【点睛】此题考查的是二次根式的化简,掌握分母有理化是解决此题的关键.10、A【解析】首先根据条件∠ACB=90°,CD是AB边上的高,可证出∠BCD+∠ACD=90°,∠B+∠BCD=90°,再根据同角的补角相等可得到∠B=∠DCA,再利用三角形的外角与内角的关系可得到∠CFE=∠FEC,最后利用等角对等边可证出结论.【详解】∵∠ACB=90°,∴∠BCD+∠ACD=90°,∵CD是AB边上的高,∴∠B+∠BCD=90°,∴∠B=∠DCA,∵AF是∠BAC的平分线,∴∠1=∠2,∵∠1+∠B=∠CFE,∠2+∠DCA=∠FEC,∴∠CFE=∠FEC,∴CF=CE,∴△CEF是等腰三角形.故选A【点睛】此题考查等腰三角形的判定,解题关键在于掌握判定定理.二、填空题(每小题3分,共24分)11、.【解析】试题分析:∵是方程3x﹣my=7的一个解,∴把代入方程可得3×2﹣3m=7,解得m=.故答案为.考点:二元一次方程的解.12、8.1【分析】精确到哪位,就是对它后边的一位进行四舍五入,这里对千分位的6进行四舍五入,即可得出答案.【详解】用四舍五入法精确到0.01为8.1.故答案为:8.1.【点睛】本题考查了近似数和有效数字.精确到哪一位,即对下一位的数字进行四舍五入.13、9【分析】的整数部分为,则可求出a的取值范围,即可得到答案.【详解】解:的整数部分为,则a的取值范围8<a<27所以得到奇数有:9、11、13、15、17、19、21、23、25共9个故答案为:9【点睛】此题主要考查了估算无理数的大小,估算是我们具备的数学能力,“夹逼法”是估算的一般方法.14、3y(x﹣2).【分析】直接提取公因式进而分解因式即可.【详解】解:3xy﹣6y=3y(x﹣2).故答案为:3y(x﹣2).【点睛】本题考查了提取公因式法分解因式,正确找出公因式是解题的关键.15、3【分析】延长AE与BC相交点H,先用ASA证明AEC≌HEC,则SHEC=SAEC,求出BH,CH的长度,利用ABC的面积为9,求出ACH的面积为6,即可得到的面积.【详解】解:延长AE与BC相交点H,如图所示∵CD平分∠ACB∴∠ACD=∠BCD∵AE⊥CD∴∠AEC=∠HEC在AEC和HEC中∴AEC≌HEC(ASA)∴AC=CH∴SHEC=SAEC∵BC=6,AC=4∴BH=2,CH=4过A作AK⊥BC,则∵,BC=6,∴AK=3,∴SHCA=,∴SHEC=SAEC=3;故答案为:3.【点睛】本题考查了全等三角形的判定和性质,三角形的角平分线定义,以及三角形面积的计算,熟练掌握全等三角形的判定和性质,正确求出AK的长度是解题的关键.16、【分析】根据二次根式的意义及性质,被开方数大于或等于0,据此作答.【详解】根据二次根式的意义,被开方数,解得.故函数的定义域是.故答案为:.【点睛】主要考查了二次根式的意义和性质.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.掌握二次根式的概念和性质是关键.17、【分析】由已知方程没有实数根,得到根的判别式小于0,列出关于m的不等式,求出不等式的解集即可得到m的范围.【详解】解:∵方程x2-4x-m+1=0没有实数根,

∴△=16-4(-m+1)=4m+12<0,

解得:m<-1.

故答案为:m<-1【点睛】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.18、9b1-4a1【分析】根据平方差公式:(a-b)(a+b)=a1-b1计算即可.【详解】解:(-1a-3b)(1a-3b)=(-3b-1a)(-3b+1a)=(-3b)1-(1a)1=9b1-4a1故答案为:9b1-4a1.【点睛】此题考查的是平方差公式,掌握平方差公式是解决此题的关键.三、解答题(共66分)19、(1)解法一中的计算有误;(2)原方程组的解是【分析】利用加减消元法或代入消元法求解即可.【详解】(1)解法一中的计算有误(标记略)(2)由①-②,得:,解得:,把代入①,得:,解得:,所以原方程组的解是.【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.20、(1)见解析;(2)见解析;(3)【分析】(1)由ASA即可得出结论;(2)先证明四边形ABCD是平行四边形,再证明AD=AB,即可得出结论;(3)由菱形的性质得出AC⊥BD,证明四边形ACED是平行四边形,得出AC=DE=2,AD=EC,由菱形的性质得出EC=CB=AB=2,得出EB=4,由勾股定理得BD═,即可得出答案.【详解】(1)∵点O是AC的中点,∴AO=CO,∵AM∥BN,∴∠DAC=∠ACB,在△AOD和△COB中,,∴△ADO≌△CBO(ASA);(2)由(1)得△ADO≌△CBO,∴AD=CB,又∵AM∥BN,∴四边形ABCD是平行四边形,∵AM∥BN,∴∠ADB=∠CBD,∵BD平分∠ABN,∴∠ABD=∠CBD,∴∠ABD=∠ADB,∴AD=AB,∴平行四边形ABCD是菱形;(3)由(2)得四边形ABCD是菱形,∴AC⊥BD,AD=CB,又DE⊥BD,∴AC∥DE,∵AM∥BN,∴四边形ACED是平行四边形,∴AC=DE=2,AD=EC,∴EC=CB,∵四边形ABCD是菱形,∴EC=CB=AB=2,∴EB=4,在Rt△DEB中,由勾股定理得BD==,∴.【点睛】本题考查了菱形的判定与性质、全等三角形的判定与性质、平行四边形的判定与性质、等腰三角形的判定与性质、勾股定理等知识;熟练掌握菱形的判定与性质是解题的关键.21、80°.【分析】先根据平行四边形的性质和三角形的内角和定理求出∠ABC与∠ABE度数,据此得出∠CBG度数,再证△BCG≌△DAF得出∠ADF=∠CBG,继而由三角形外角性质可得答案.【详解】∵四边形ABCD是平行四边形,∠C=50,∴∠A=∠C=50,∠ABC=180﹣∠C=130,AD=BC.∵∠E=30,∴∠ABE=180﹣∠A﹣∠E=100,∴∠CBG=30,在△BCG和△DAF中,∵,∴△BCG≌△DAF(SAS),∴∠CBG=∠ADF=30,则∠BFD=∠A+∠ADF=80.【点睛】此题主要考查平行四边形的性质与证明,解题的关键是熟知平行四边形的性质及全等三角形的判定与性质.22、(1);(2)见解析【分析】(1)证明△ABE≌△CAF得BE=AF,进而由勾股定理求得AB;(2)连接AD、DE,证明△ADE≌△CDF得到DE=DF,进而得EF=DF,进而得出结论.【详解】解:(1)∵CF⊥AM,BE⊥AM,∴∠AEB=∠CFA=90°,∵∠CAB=90°,∴∠BAE+∠ABE=∠BAE+∠CAF=90°,∴∠ABE=∠CAF,∵AC=AB,∴△ABE≌△CAF(AAS),∴BE=AF=4,∴AB=;(2)连接AD、DE,∵△ABE≌△CAF,∴AE=CF,∵,∠CAB=90°,AC=AB,D是BC的中点,∴AD=CD,∠ADC=90°,∵CF⊥AM,∴∠CFA=90°,∵∠AHD=∠CHF,∴∠DAE=∠DCF,∴△ADE≌△CDF(SAS),∴DE=DF,∠ADE=∠CDF,∴∠EDF=∠ADC=90°,∴EF=DF,∵AF=AE+EF,BE=AF,∴BE=DF+CF.【点睛】本题主要考查了等腰直角三角形的性质,全等三角形的性质及判定,勾股定理,关键在构造和证明全等三角形.23、(1)50,5;(2)7.4;(3)600.【分析】(1)用B级的人数除以所占百分比即可得到甲班学生总数,用学生总数减去A,B,C级的人数可得到a的值;(2)根据加权平均数的计算方法求解即可;(3)用3000乘以样本中A级所占的比例即可.【详解】解:(1)甲班学生总数为:20÷40%=50(人),a=50-10-2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论