




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
7.5多边形的内角和与外角和(1)------三角形的内角和活动1:拼图请每位同学将课前发下的三角形纸片的3个内角(如图)剪开,然后拼在一起,你发现了什么?一、情境引入如图1,3根木条相交成∠1,∠2,若木条a与木条b平行,则∠1+∠2=180°思考:把木条a绕点A转动,使它与木条b相交于点C,你能说明“三角形内角和等于180°”吗?AaB活动2议一议b12图1证明:三角形的内角和等于180°.F21ECBA证法1:过点A作EF∥BC,∵EF∥BC∴∠B=∠2(两直线平行,内错角相等)∠C=∠1(两直线平行,内错角相等)又∵∠2+∠1+∠BAC=180°∴∠B+∠C+∠BAC=180°证明:三角形的内角和等于180°.21EDCBA证法2:延长BC到点D,过点C作CE∥AB,∵CE∥AB
∴∠A=∠1(两直线平行,内错角相等)∠B=∠2(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°证明:三角形的内角和等于180°.证法3:过点A作AE∥BC,∵AE∥BC∴∠B=∠EAB(两直线平行,内错角相等)∠EAC+∠C=180°(两直线平行,同旁内角互补)
即∠EAB+∠BAC+∠C=180°∴∠B+∠BAC+∠C=180°CBEA为了证明三个角的和为180°,转化为一个平角或同旁内角互补,这种转化思想是数学中的常用方法.三角形的内角和等于180°ABC1、符号语言:在△ABC中,∠A+∠B+∠C=180°
推论1:直角三角形的两个锐角互余。活动3:拓展
如图,把△ABC的边AB延长,得到∠CBD.那么∠A+∠C与∠CBD的大小关系如何?∠CBD=∠A+∠C三角形的外角:三角形的一边与另一边的延长线组成的角,叫做三角形的外角.推论2:三角形的外角的性质三角形的外角等于与它不相邻的两个内角的和。1、符号语言:∠A+∠C=∠CBD(外角的性质)找一找1.如图(1),D是△ABC内一点,延长CD交AB于E点,∠1是△__的外角,∠2是△__的外角.
如图(2),AC、BD相交于点O,∠AOD是△__、△__的外角.BEDACEAOBBAOCD(2)2AEBC1DCOD(1)试一试求图中x和y的值2、
如图,AD、BC相交于点O,∠A=50°,∠B=32°,∠C=45°,求∠D的度数.ABCDO例1.在△ABC中,∠A=40°,∠B=∠C,求∠C的度数?例题讲解:如图,AD是△ABC的角平分线,E是BC延长线上一点,∠EAC=∠B,∠ADE与∠DAE相等吗?解:∠ADE与∠DAE相等.因为∠DAE=∠2+∠EAC,所以∠ADE=∠B+∠1,因为∠1=∠2,∠EAC=∠B,所以∠ADE=∠DAE.12变式1:
如图,△ABC的∠B和∠C的平分线交于D,则∠BDC等于()C
解:∵BD、CD分别是为∠ABC、
∠ACD的平分线,
∴∠ABC=2∠1,∠ACB=2∠2∵∠ABC+∠ACB=180°-∠A,
∴2∠1+2∠2=180°-∠A,
1.如图所示,∠A+∠B+∠C+∠D+∠E=__°四、拓展延伸1801、重点探究了三角形3个内角之间的关系以及三角形外角的性质.三角形3个内
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 发廊股东合同范本
- 农业集团转让合同范本
- 卖场业务员合同范例
- 移动房出售合同范本
- 房屋土地合作合同范本
- 云南2025年02月云南省有色地质局上半年公开招考38名人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 苏州2025年江苏苏州张家港市招聘备案制教师47人笔试历年参考题库附带答案详解
- 2025年植物病虫害防治技能竞赛备考试指导题库500题(含答案)
- 门窗店铺转让合同范本
- 2025至2030年中国杨琴弦数据监测研究报告
- 注意缺陷与多动障碍疾病科普幼儿心理健康教育课件
- 区域临床检验中心
- 2024年07月长沙农村商业银行股份有限公司2024年招考3名信息科技专业人才笔试历年参考题库附带答案详解
- 中医预防流感知识讲座
- 事故隐患内部报告奖励机制实施细则
- 船舶水下辐射噪声指南 2025
- 2024年黑龙江哈尔滨市中考英语真题卷及答案解析
- 房屋市政工程生产安全重大事故隐患判定标准(2024版)宣传画册
- 2025年中国配音行业市场现状、发展概况、未来前景分析报告
- 中建建筑工程竣工验收指南
- 2020年同等学力申硕《计算机科学与技术学科综合水平考试》历年真题及答案
评论
0/150
提交评论