版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
交通大学课程FMIS-Ch2-TheoryofDivisibility有限域与计算数论ZhangWenfangEmail:wfzhang@SchoolofInformationScience&Technology
SouthwestJiaotongUniversityPart2ElementaryNumberTheory有限域与计算数论
FiniteFieldandComputational
NumberTheory2Part2ElementaryNumberTheory
Chapter2TheoryofDivisibility
Chapter3DistributionofPrimeNumbersChapter4TheoryofCongruencesChapter5ArithmeticofEllipticCurves3Chapter2TheoryofDivisibility2.1BasicConceptsandPropertiesofDivisibility2.2FundamentalTheoremofArithmetic2.3MersennePrimeandFermatNumber2.4Euclid’sAlgorithm2.5ContinuedFraction42.1BasicConceptsandPropertiesofDivisibilityDefinition2.1.1Letaandbbeintegerswithb
0.Wesaya
divides(整除)b,denotedbya|b,ifthereexistsanintegercsuchthatb=ac.Whenadividesb,wesaythataisadivisor
(factor:因子)ofb,andbisamultiple(倍数)ofa.Ifadoesnotdivideb,wewritea∤b.Ifa|band0<a<b,thenaiscalledaproperdivisor(真因子)ofb.Exle2.1.1Theinteger200hasthefollowingpositivedivisors:1,2,4,5,8,10,20,25,40,50,100,200.52.1BasicConceptsandPropertiesofDivisibilityDefinition2.1.2Adivisorofniscalledatrivialdivisorofnifitiseither1ornitself.Adivisorofniscalledanontrivialdivisorofnifitisadivisorofn,butisneither1,norn.Exle2.1.2Fortheinteger18,1and18arethetrivialdivisors,whereas2,3,6and9arethenontrivialdivisors.6BasicPropertiesofDivisibilityTheorem2.1.1Leta,bandcbeintegers.(1)Ifa|banda|c,thena|(sb+tc),foranys,t
Z.(2)Ifa|b,thena|(bc),foranyintegerc.(3)Ifa|bandb|c,thena|c.Proof.(1)Sincea|banda|c,wehaveb=ma,c=na,m,n
Z.Thussb+tc=(sm+tn)a.Hencea|(sb+tc)sincesm+tnisaninteger.7DivisionalgorithmTheorem2.1.2.Foranyintegeraandpositiveintegerb,thereexistuniqueintegersqandrsuchthat
a=bq+r,0
r<b,whereaiscalledthedividend(被除数),qthequotient(商),andrtheremainder(余数).8DivisionalgorithmProof.Considerthearithmeticprogression
…,
3b,2b,
b,0,b,2b,3b,…thentheremustbeanintegerqsuchthatqb
a<(q+1)b.Leta
qb=r,thena=qb+rwith0
r<b.Toshowtheuniquenessofqandr,supposethereisanotherpairq1andr1satisfyingthefollowingcondition:a=bq1+r1,0
r1<b.Wefirstshowthatr1=r.Forifnot,wemaypresumethatr<r1,sothat0<r1
r<b,andthenweseethatb(q
q1)=r1
r,andsob|(r1
r),whichisimpossible.Hence,r=r1,andalsoq=q1.9DivisionalgorithmExle2.1.2Letb=15.Then(1)whena=255,a=b·17+0,soq=17andr=0<15.(2)whena=177,a=b·11+12,soq=11andr=12<15.(3)whena=783,a=b·(52)+3,soq=52andr=3<15.10PrimeDefinition2.1.3.Apositiveintegerngreaterthan1iscalledaprime(素数)ifitsonlydivisorsarenand1. Apositiveintegernthatisgreaterthan1andisnotprimeiscalledcomposite(合数).Theorem2.1.2(Euclid).Thereareinfinitelymanyprime.Proof.Supposethatp1,p2,…,pkarealltheprimes.ConsiderthenumberN=p1p2…pk+1.Ifitisaprime,thenitisanewprime.Otherwise,ithasaprimefactorq.Ifqwereoneoftheprimespi,i=1,2,…,k,thenq|(p1p2…pk),andsinceq|(p1p2…pk+1),qwoulddividethedifferenceofthesenumber,namely1,whichisimpossible.Soqcannotbeoneofthepifori=1,2,…,k,andmustthereforebeanewprime.11PrimeTheorem2.1.3.Ifnisaninteger1,thenthereisaprimep
suchthatn
p
n!+1.Theorem2.1.4.Givenanyrealnumberx1,thenexistsaprimebetween
xand2x.12TheSieveofEratosthenes
(埃拉托色尼筛法)Theorem2.1.5.Ifnisacomposite,thennhasaprimedivisorp
suchthatProof.Letpbethesmallestprimedivisorofn.Ifn=rs,thenp
randp
s.Hence,p2
rs.13TheSieveofEratosthenes(筛选法)Algorithm2.1.1.Givenapositiveintegern>1,thisalgorithmwillfindallprimesupton.(1)Createalistofintegersfrom2ton:2,3,4,5,6,7,8,9,10,11,12,13,14,15,…,n.(2)Forprimenumberspi(i=1,2,3,…)from2,3,5upto
deleteallthemultiplespi<pi
m
nfromthelist:
(2.1)Startingfrom2,deleteallthemultiples2mof2suchthat2<2m
n:2,3,5,7,9,11,13,15,…,n.(2.2)Startingfrom3,deleteallthemultiples3mof3suchthat3<3m
n:2,3,5,7,11,13,…,n.……(3)Printtheintegersremaininginthelist.14TheSieveofEratosthenesExample
(2.1)deleteallthemultiples2mof2suchthat2<2m
37.2,3,4,5,6,7,8,9,10,11,12,13,
14,15,16,17,18,19,20,21,22,23,24,25,
26,27,28,29,30,31,32,33,34,35,36,37.2,3and5below6.(1)Allpositiveintegersfrom2to37areasfollows.2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37.15TheSieveofEratosthenes
(2.2)deleteallthemultiples3mof3suchthat3<3m
37.2,3,,5,,7,,9,,11,,13,,15,,17,,19,,21,,23,,25,,27,,29,,31,,33,,35,,37.(2.3)deleteallthemultiples5mof5suchthat5<5m
37.2,3,,5,,7,,,,11,,13,,,,17,,19,,,,23,,25,,,,29,,31,,,,35,,37.(3)Theremainingnumbers2,3,5,7,11,13,17,19,23,29,31,37arethentheprimesupto37.16Chapter2TheoryofDivisibility2.1BasicConceptsandPropertiesofDivisibility2.2FundamentalTheoremofArithmetic2.3MersennePrimeandFermatNumber2.4Euclid’sAlgorithm2.5ContinuedFraction172.2FundamentalTheoremofArithmeticTheorem2.2.1.Everypositiveintegerngreaterthan1canbewrittenuniquelyastheproductofprimes:
wherep1,p2,…,pkaredistinctprimes,anda1,a2,…,akarenaturalnumbers.Exle2.2.1.Thefollowingaresomesleprimefactorizations:643=6432311=2147483647644=22·7·23231+1=3·715827883645=3·5·432321=3·5·17·257·65537646=2·17·19232+1=641·6700417647=647231+2=2·52·13·41·61·132118ThegreatestcommondivisorDefinition2.2.1.Letaandbbeintegers,notbothzero.Thelargest
divisordsuchthatd|aandd|biscalledthegreatestcommondivisor(gcd:最大公因子)ofaandb.Thegreatestcommondivisorofaandbisdenotedbygcd(a,b).Exle2.2.2.Thesetofpositivedivisorof111and333areasfollows:1,3,37,111,1,3,9,37,111,333,sogcd(111,333)=111.Butgcd(91,111)=1,since91and111havenocommondivisorsotherthan1.19ThegreatestcommondivisorTheorem2.2.2.Letaandbbeintegers,notbothzero.Thenthereexistsintegersxandysuchthat
d=gcd(a,b)=ax+by.
Proof.Considerthesetofalllinearcombinationsau+bv,whereuandvrangeoverallintegers.Clearlythissetofintegers{au+bv}includespositive,negativeaswellas0.Choosexandysuchthatm=ax+byisthesmallestpositiveintegerintheset.UsetheDivisoralgorithm,towritea=mq+r,where0
r<m.Then
r=a
mq=a
q(ax+by)=(1qx)a+(qy)bandhencerisalsoalinearcombinationofaandb.Butr<m,soitfollowsfromthedefinitionofmthatr=0.Thusa=mq,thatism|a;similarly,m|b.Therefore,misacommondivisorofaandb.Sinced=gcd(a,b),m
d.Sinced|aandd|b,thend|m,d
m.Thus,wemusthaved=m.20RelativelyprimeDefinition2.2.2.Twointegersaandbarecalledrelativelyprime(互素)ifgcd(a,b)=1.Wesaythatintegersa1,a2,…,akarepairwiserelativelyprimeif,wheneveri
j,wehavegcd(ai,aj)=1.Exle2.2.3.91and111arerelativelyprime,sincegcd(91,111)=1.21RelativelyprimeProof.Ifaandbarerelativelyprime,sothatgcd(a,b)=1,thenTheorem2.2.2guaranteestheexistenceofintegersxandysatisfyingax+by=1.Asfortheconverse,supposethatax+by=1andthatgcd(a,b)=d.Sinced|aandd|b,d|(ax+by),thatd|1.Thusd=1.Theorem2.2.3.Letaandbbeintegers,notbothzero,thenaandbarerelativelyprimeifandonlyifthereexistsintegersxandysuchthatax+by=1.22RelativelyprimeProof.ByTheorem2.2.2,wecanwriteax+by=1forsomechoiceofintegersxandy.Multiplyingthisequationbycwegetacx+bcy=c.Sincea|acanda|bc,itfollowingthata|(acx+bcy).Thatisa|c.Theorem2.2.4.Ifa|bcandgcd(a,b)=1,thena|c.23Theleastcommonmultiple(LCM)Ifdisamultipleofaandalsoamultipleofb,thendisacommonmultipleofaandb.Theleastcommonmultiple(lcm:最小公倍数)oftwointegersaandb,isthesmallestcommonmultipleofaandb.Theleastcommonmultipleofaandbisdenotedbylcm(a,b).Theorem2.2.5.If24Theleastcommonmultiple(LCM)Theorem2.2.6.Supposeaandbarepositiveintegers,thenExle2.2.3.Findgcd(240,560)andlcm(240,560).25Chapter2TheoryofDivisibility2.1BasicConceptsandPropertiesofDivisibility2.2FundamentalTheoremofArithmetic2.3MersennePrimeandFermatNumber2.4Euclid’sAlgorithm2.5ContinuedFraction
26MersenneprimeDefinition2.3.1.AnumberiscalledaMersennenumberifitisintheformof
Mp=2p
1,wherepisaprime.IfaMersennenumberisaprime,thenaitiscalledaMersenneprime.Exle2.3.1.Thefollowingnumbers221=3,231=7,251=31,271=127,2131=8191,2171=131071.areallMersennenumbersaswellasMersenneprimes,but2111isonlyaMersennenumbers,notaMersenneprimes,since2111=2047=2389isacomposite.27MersenneprimeTheknownMersenneprimes
Mp=2p
1No.pDigitsinMpdiscoverer(s)andtime1215134Anonymous,14566176Cataldi,158883110Euler,177296119Pervushin,1883108927Powers,191125217016533Nool&Nickell(two18-year-oldAmericanhigh-choolstudentsinCalifornia),19783869725932098960Hajratwala,Woltman&Kurowskietal.,1999391346691740533946Cameron,Woltman&Kurowskietal.,200128FermatnumberDefinition2.3.2.NumbersoftheformFermatwaswrongFermatin1640conjectured,inalettertoMersenne,thatallFermatnumberwereprimesafterhehadverifieditupton=4;butEulerin1732foundthatthefifthFermatnumberisnotaprime,sinceF5=6416700417.
Todate,theFermatnumbersF5,F6,…,F11havebeencompletelyfactored.
calledFermatnumber.AFermatnumberiscalledaprimeFermatnumberifitisprime.AFermatnumberiscalledacompositeFermatnumberifitiscomposite.29Chapter2TheoryofDivisibility2.1BasicConceptsandPropertiesofDivisibility2.2FundamentalTheoremofArithmetic2.3MersennePrimeandFermatNumber2.4Euclid’sAlgorithm2.5ContinuedFraction302.4Euclid’sAlgorithmProof.LetX=gcd(a,b)andY=gcd(b,r),itsufficestoshowX=Y.Ifintegercisadivisorofaandb,itfollowsfromtheequationa=bq+randthedivisibilitypropertiesthatcisadivisorofralso.Bythesameargument,everycommondivisorofbandrisadivisorofa.Theorem2.4.1.Leta,b,q,rbeintegerswithb>0and0
r<bsuchthata=bq+r.Thengcd(a,b)=gcd(b,r).312.4Euclid’sAlgorithm
Then(1)gcd(a,b)=rn.Theorem2.4.2.Letaandbbepositiveintegerswitha>b.Applythedivisionalgorithmrepeatedlyasfollows:322.4Euclid’sAlgorithm
(2)Valuesofxandyingcd(a,b)=ax+by=rncanbeobtainedbywritingeachriasalinearcombinationofaandb.
rn=rn
2
rn1
qn
1=…=ax+by.332.4Euclid’sAlgorithmRemark2.4.1.Euclid’salgorithmisfoundinBookVII,Proposition1and2ofhisElements(几何原本),butitprobablywasn’thisowninvention.Scholarsbelievethatthemethodwasknownupto200yearsearlier.However,itfirstappearedinEuclid’sElements,andmoreimportantly,itisfirstnontrivialalgorithmthathassurvivedtothisday.Remark2.4.2.IfEuclid’salgorithmisappliedtotwopositiveintegersaandbwitha>b,thenthenumberofdivisionsrequiredtofindgcd(a,b)isO(logb),apolynomial-timecomplexity.Thebig-Onotationisusedtodenotetheupperboundofacomplexityfunction,i.e.,f(n)=O(g(n))ifthereexistssomeconstantc>0suchthatf(n)
c
g(n).342.4Euclid’sAlgorithmExle2.4.1.UseEuclid’salgorithmtofindthegcdof1281and243.Since1281=2435+66,243=663+45,66=451+21,45=212+3,21=37+0,wehavegcd(1281,243)=3,and
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《证劵基础知识最终》课件
- 《激光切割工艺》课件
- 荒山绿化项目可行性研究报告
- 《人力资源管理奥秘》课件
- 股份解禁协议三篇
- 专业毕业实习报告4篇
- 2023年-2024年企业主要负责人安全教育培训试题及答案(易错题)
- 2024员工三级安全培训考试题带解析答案可打印
- 2023年-2024年项目部安全管理人员安全培训考试题附答案【培优A卷】
- 2023年-2024年企业主要负责人安全培训考试题(预热题)
- 无人机表演服务合同
- 呼吸内科临床诊疗指南及操作规范
- 物业经理转正述职
- 贸易岗位招聘面试题及回答建议(某大型国企)2025年
- 世界职业院校技能大赛高职组“关务实务组”赛项参考试题及答案
- 高中历史教师资格考试面试试题及解答参考(2024年)
- 北师大版(2024新版)生物七年级上册期末考点复习提纲
- 2024年理论中心组学习心得体会模版(2篇)
- 浙江省杭州市2023-2024学年六年级上学期语文期末试卷(含答案)
- 环保行业工业废气污染防治技术路线方案
- 电工的职业健康培训
评论
0/150
提交评论