《7.3.1离散型随机变量的均值》教案、导学案与同步练习_第1页
《7.3.1离散型随机变量的均值》教案、导学案与同步练习_第2页
《7.3.1离散型随机变量的均值》教案、导学案与同步练习_第3页
《7.3.1离散型随机变量的均值》教案、导学案与同步练习_第4页
《7.3.1离散型随机变量的均值》教案、导学案与同步练习_第5页
已阅读5页,还剩34页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《7.3.1离散型随机变量的均值》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第三册》,第七章《随机变量及其分布列》,本节课主本节课主要学习离散型随机变量的均值本节本部分内容主要包括随机变量的均值和方差。本节课是前面学习完随机变量分布列的基础上进行研究的,知识上具有着承前启后的作用。随机变量的均值和方差是概率论和数理统计的重要概念,节课是从实际出发,通过抽象思维,建立数学模型,进而认知数学理论,应用于实际的过程。【教学目标与核心素养】课程目标学科素养A.理解离散型随机变量的均值的意义和性质.B.会根据离散型随机变量的分布列求出均值.C.会利用离散型随机变量的均值解决一些相关的实际问题.1.数学抽象:离散型随机变量的均值的概念2.逻辑推理:离散型随机变量的均值的性质3.数学运算:求离散型随机变量的均值4.数学建模:模型化思想【重点与难点】重点:离散型随机变量的均值的意义和性质难点:用离散型随机变量的均值解决一些相关的实际问题【教学过程】教学过程教学设计一、问题导学对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.二、探究新知探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X78910甲射中的概率0.10.20.30.4乙射中的概率0.150.250.40.2类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.从平均值的角度比较,甲的射箭水平比乙高.离散型随机变量取值的平均值.一般地,若离散型随机变量X的概率分布为:则称E为随机变量X的均值(mean)或数学期望(mathematicalexpectation),数学期望简称期望.均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.Xx1x2…xi…xnPp1p2…pi…pn三、典例解析例1.在篮球比赛中,罚球命中1次得1分,不中得0分,如果某运动员罚球命中的概率为0.8,那么他罚球1次的得分X的均值是多少?分析:罚球有命中和不中两种可能结果,命中时X=1,不中时X=0,因此随机变量X服从两点分布,X的均值反映了该运动员罚球1次的平均得分水平.解:因为P(X=1)=0.8,P(X=0)=0.2,所以E(X)=1×P(X=1)+0×P(X=0)=1×0.8+0×0.2=0.8即该运动员罚球1次的得分X的均值是0.8.一般地,如果随机变量X服从两点分布,那么:X10Pp1-p例2.抛掷一枚质地均匀的骰子,设出现的点数为X,求X的均值.分析:先求出X的分布列,再根据定义计算X的均值。解:X的分布列为𝑷(X=k)=16因此,E(X)=16求离散型随机变量X的均值的步骤:(1)理解X的实际意义,写出X全部可能取值;(2)求出X取每个值时的概率;(3)写出X的分布列(有时也可省略);(4)利用定义公式EX跟踪训练1.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X的分布列和X的均值.[解]X的取值分别为1,2,3,4.X=1,表明李明第一次参加驾照考试就通过了,故P(X=1)=0.6.X=2,表明李明第一次考试未通过,第二次通过了,故P(X=2)=(1-0.6)×0.7=0.28.X=3,表明李明第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.所以李明一年内参加考试次数X的分布列为X1234P0.60.280.0960.024所以X的均值为E(X)=1×0.6+2×0.28+3×0.096+4×0.024=1.544.探究2.已知X是一个随机变量,且分布列如下表所示.设a,b都是实数且a≠0,,则Y=Xxx…x…xPpp…p…p离散型随机变量的均值的性质若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b,即随机变量X的线性函数的均值等于这个随机变量的均值E(X)的同一线性函数.特别地:(1)当a=0时,E(b)=b,即常数的均值就是这个常数本身.(2)当a=1时,E(X+b)=E(X)+b,即随机变量X与常数之和的均值等于X的均值与这个常数的和.(3)当b=0时,E(aX)=aE(X),即常数与随机变量乘积的均值等于这个常数与随机变量的均值的乘积.例3:猜歌名游戏是根据歌曲的主旋律制成的铃声来猜歌名.某嘉宾参加猜歌名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A,B,C歌名的概率及猜对时获得相应的公益基金如下表所示:规则如下:按照A,B,C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下一首,求嘉宾获得的公益基金总额X的分布列及均值.歌曲ABC猜对的概率0.80.60.4获得的公益基金额/元100020003000解:分别用A,B,C表示猜对歌曲A,B,C歌名的事件,A,B,C相互独立P(𝑋=0)=𝑃(A)=0.2,P(𝑋=1000)=𝑃(AB)=0.8×0.4=0.32,𝑃(𝑋=3000)=𝑃(𝐴𝐵C)=0.8×0.6×0.6=0.288,(𝑋=6000)=(𝐴𝐵𝐶)=0.8×0.6×0.4=0.192.X的分布列如下表所示:X0100040006000P0.20.480.1280.192𝑋的均值为𝐸(𝑋)=0×0.2+1000×0.32+3000×0.288+6000×0.192=2336.思考:如果改变猜歌的顺序,获得公益基金的均值是否相同?如果不同,你认为哪个顺序获得的公益基金均值最大?解:如果按ACB的顺序来猜歌,分别用A,B,C表示猜对歌曲A,B,C歌名的事件,A,B,C相互独立;(𝑋=0)=𝑃(A)=0.2,(𝑋=1000)=𝑃(AC)=0.8×0.4=0.32,𝑃(𝑋=3000)=𝑃(𝐴CB)=0.8×0.4×0.4=0.128,(𝑋=6000)=(𝐴CB)=0.8×0.4×0.6=0.192.X的分布列如下表所示:X0100030006000P0.20.320.2880.192X按由易到难的顺序来猜歌,获得的公益基金的均值最大猜歌顺序E(X)/元猜歌顺序E(X)/元ABC2336BCA2112ACB2144CAB1904BAC2256CBA1872例4.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元。为保护设备,有以下三种方案:方案1:运走设备,搬运费为3800元。方案2:建保护围墙,建设费为2000元,但围墙只能挡住小洪水。方案3:不采取措施,希望不发生洪水。工地的领导该如何决策呢?分析:决策目标为总损失(投入费用与设备损失之和)越小越好,根据题意,各种方案在不同状态下的总损失如表所示:天气状况大洪水小洪水没有洪水概率0.010.250.74总损失/元方案1380038003800方案26200020002000方案360000100000方案2和方案3的总损失都是随机变量,可以采用期望总损失最小的方案。解:设方案1、方案2、方案3的总损失分别为X1,X2,X3.采用方案1,无论有无洪水,都损失3800元.因此,P(X1=3800)=1.采用方案2,遇到大洪水时,总损失为2000+6000=62000元;没有大洪水时,总损失为2000元,因此,P(X2=62000)=0.01,P(X2=2000)=0.99.采用方案3,P(X3=60000)=0.01,P(X3=10000)=0.25,P(X3=0)=0.74.于是,E(X1)=3800,E(X2)=62000×0.01+2000×0.99=2600,E(X3)=60000×0.01+10000×0.25+0×0.74=3100.因此,从期望损失最小的角度,应采取方案2.值得注意的是,上述结论是通过比较“期望总损失”而得出的,一般地,我们可以这样来理解“期望总损失”:如果问题中的天气状况多次发生,那么采用方案2将会使总损失减到最小,不过,因为洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2也不一定是最好的.通过知识回顾,提出问题.通过具体的问题情境,引发学生思考积极参与互动,说出自己见解。从而引入离散型随机变量分布列均值的概念,发展学生逻辑推理、数学运算、数学抽象和数学建模的核心素养。通过典例解析,提升对概念精细化的理解。引出两点分布均值的概念。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。通过典例解析,深化概率的理解。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。三、达标检测1.若随机变量X的分布列为X-101Peq\f(1,2)eq\f(1,6)eq\f(1,3)则E(X)=()A.0B.-1C.-eq\f(1,6)D.-eq\f(1,2)C[E(X)=(-1)×eq\f(1,2)+0×eq\f(1,6)+1×eq\f(1,3)=-eq\f(1,6).]2.某射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的数学期望为()A.2.44B.3.376C.2.376D.2.4解析:X的可能取值为3,2,1,0,P(X=3)=0.6;P(X=2)=0.4×0.6=0.24;P(X=1)=0.42×0.6=0.096;P(X=0)=0.43=0.064.所以E(X)=3×0.6+2×0.24+1×0.096+0×0.064=2.376.答案:C3.已知ξ的分布列如下表,若η=3ξ+2,则E(η)=.ξ123P1t1解析:因为12+t+13=1,所以t=E(ξ)=1×12+2×16+3×E(η)=E(3ξ+2)=3E(ξ)+2=3×116+2=15答案:154.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,2解析:当l的斜率k=±22时,直线方程为±22x-y+1=0,此时d1=13;k=±3时,直线方程为±3x-y+1=0,此时d2=12;k=±52时,直线方程为±52x-y+1=0,此时d3=X1121P2221所以E(X)=13×2答案:45.口袋里装有大小相同的8张卡片,其中3张标有数字1,3张标有数字2,2张标有数字3.第一次从口袋里任意抽取1张,放回口袋里后第二次再任意抽取1张,记第一次与第二次取到卡片上数字之和为ξ.求:(1)ξ为何值时,其发生的概率最大?并说明理由.(2)随机变量ξ的数学期望E(ξ).解:(1)随机变量ξ的可能取值是2,3,4,5,6,当ξ=4时,其发生的概率最大.因为P(ξ=2)=32P(ξ=3)=2×3P(ξ=4)=32P(ξ=5)=2×3×28P(ξ=6)=22故当ξ=4时满足题意.(2)E(ξ)=2×964+3×932+4×2164+5×3通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。四、小结1.求离散型随机变量均值的步骤(1)确定离散型随机变量X的取值;(2)写出分布列,并检查分布列的正确与否;(3)根据公式写出均值.2.若X,Y是两个随机变量,且Y=aX+b,则E(Y)=aE(X)+b;如果一个随机变量服从两点分布,可直接利用公式计算均值.通过总结,让学生进一步巩固本节所学内容,提高概括能力。【教学反思】本节课需要学生探究的内容比较多,由于学生的数学基础比较薄弱,所以在教学过程中教师不仅要耐心的指导,还要努力创设一个轻松和谐的课堂氛围,让每个学生都能大胆的说出自己的想法,保证每个学生都能学有所得。为了让每个学生在课上都能有话说,还需要学生做到课前预习,并且教师要给学生提出明确的预习目标。进一步发展学生直观想象、数学抽象、逻辑推理和数学运算的核心素养。《7.3.1离散型随机变量的均值》导学案【学习目标】1.理解离散型随机变量的均值的意义和性质.2.会根据离散型随机变量的分布列求出均值.3.会利用离散型随机变量的均值解决一些相关的实际问题.【重点与难点】重点:离散型随机变量的均值的意义和性质难点:用离散型随机变量的均值解决一些相关的实际问题【知识梳理】1.随机变量X的均值:一般地,若离散型随机变量X的概率分布为:则称E(X)=Xx1x2…xi…xnPp1p2…pi…pn为随机变量X的均值(mean)或数学期望(mathematicalexpectation),数学期望简称期望.均值是随机变量可能取值关于取值概率的加权平均数,它综合了随机变量的取值和取值的概率,反映了随机变量取值的平均水平.2.两点分布的均值:一般地,如果随机变量X服从两点分布,那么:X10Pp1-p3.离散型随机变量的均值的性质:已知X是一个随机变量,且分布列如下表所示.Xxx…x…xPpp…p…p若X,Y是两个随机变量,且Y=aX+b,则有E(Y)=aE(X)+b,即随机变量X的线性函数的均值等于这个随机变量的均值E(X)的同一线性函数.特别地:(1)当a=0时,E(b)=b,即常数的均值就是这个常数本身.(2)当a=1时,E(X+b)=E(X)+b,即随机变量X与常数之和的均值等于X的均值与这个常数的和.(3)当b=0时,E(aX)=aE(X),即常数与随机变量乘积的均值等于这个常数与随机变量的均值的乘积.【学习过程】一、问题探究对于离散型随机变量,可以由它的概率分布列确定与该随机变量相关事件的概率。但在实际问题中,有时我们更感兴趣的是随机变量的某些数字特征。例如,要了解某班同学在一次数学测验中的总体水平,很重要的是看平均分;要了解某班同学数学成绩是否“两极分化”则需要考察这个班数学成绩的方差。我们还常常希望直接通过数字来反映随机变量的某个方面的特征,最常用的有期望与方差.探究1.甲乙两名射箭运动员射中目标靶的环数的分布列如下表所示:如何比较他们射箭水平的高低呢?环数X78910甲射中的概率0.10.20.30.4乙射中的概率0.150.250.40.2二、典例解析例1.在篮球比赛中,罚球命中1次得1分,不中得0分,如果某运动员罚球命中的概率为0.8,那么他罚球1次的得分X的均值是多少?例2.抛掷一枚质地均匀的骰子,设出现的点数为X,求X的均值.求离散型随机变量X的均值的步骤:(1)理解X的实际意义,写出X全部可能取值;(2)求出X取每个值时的概率;(3)写出X的分布列(有时也可省略);(4)利用定义公式EX跟踪训练1.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,即可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9,求在一年内李明参加驾照考试次数X的分布列和X的均值.例3:猜歌名游戏是根据歌曲的主旋律制成的铃声来猜歌名.某嘉宾参加猜歌名节目,猜对每首歌曲的歌名相互独立,猜对三首歌曲A,B,C歌名的概率及猜对时获得相应的公益基金如下表所示:规则如下:按照A,B,C的顺序猜,只有猜对当前歌曲的歌名才有资格猜下一首,求嘉宾获得的公益基金总额X的分布列及均值.歌曲ABC猜对的概率0.80.60.4获得的公益基金额/元100020003000思考:如果改变猜歌的顺序,获得公益基金的均值是否相同?如果不同,你认为哪个顺序获得的公益基金均值最大?例4.根据气象预报,某地区近期有小洪水的概率为0.25,有大洪水的概率为0.01,该地区某工地上有一台大型设备,遇到大洪水时要损失60000元,遇到小洪水时要损失10000元。为保护设备,有以下三种方案:方案1:运走设备,搬运费为3800元。方案2:建保护围墙,建设费为2000元,但围墙只能挡住小洪水。方案3:不采取措施,希望不发生洪水。工地的领导该如何决策呢?值得注意的是,上述结论是通过比较“期望总损失”而得出的,一般地,我们可以这样来理解“期望总损失”:如果问题中的天气状况多次发生,那么采用方案2将会使总损失减到最小,不过,因为洪水是否发生以及洪水发生的大小都是随机的,所以对于个别的一次决策,采用方案2也不一定是最好的.【达标检测】1.若随机变量X的分布列为X-101Peq\f(1,2)eq\f(1,6)eq\f(1,3)则E(X)=()A.0B.-1C.-eq\f(1,6)D.-eq\f(1,2)2.某射手对靶射击,直到第一次命中为止,每次命中的概率为0.6,现有4颗子弹,命中后的剩余子弹数目X的数学期望为()A.2.44B.3.376C.2.376D.2.43.已知ξ的分布列如下表,若η=3ξ+2,则E(η)=.ξ123P1t14.设l为平面上过点(0,1)的直线,l的斜率等可能地取-22,-3,-52,0,52,3,25.口袋里装有大小相同的8张卡片,其中3张标有数字1,3张标有数字2,2张标有数字3.第一次从口袋里任意抽取1张,放回口袋里后第二次再任意抽取1张,记第一次与第二次取到卡片上数字之和为ξ.求:(1)ξ为何值时,其发生的概率最大?并说明理由.(2)随机变量ξ的数学期望E(ξ).【课堂小结】1.求离散型随机变量均值的步骤(1)确定离散型随机变量X的取值;(2)写出分布列,并检查分布列的正确与否;(3)根据公式写出均值.2.若X,Y是两个随机变量,且Y=aX+b,则E(Y)=aE(X)+b;如果一个随机变量服从两点分布,可直接利用公式计算均值.【参考答案】学习过程一、问题探究探究1.类似两组数据的比较,首先比较击中的平均环数,如果平均环数相等,再看稳定性.假设甲射箭n次,射中7环、8环、9环和10环的频率分别为:甲n次射箭射中的平均环数当n足够大时,频率稳定于概率,所以x稳定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均环数的稳定值(理论平均值)为9,这个平均值的大小可以反映甲运动员的射箭水平.同理,乙射中环数的平均值为7×0.15+8×0.25+9×0.4+10×0.2=8.65.从平均值的角度比较,甲的射箭水平比乙高.二、典例解析例1.分析:罚球有命中和不中两种可能结果,命中时X=1,不中时X=0,因此随机变量X服从两点分布,X的均值反映了该运动员罚球1次的平均得分水平.解:因为P(X=1)=0.8,P(X=0)=0.2,所以E(X)=1×P(X=1)+0×P(X=0)=1×0.8+0×0.2=0.8即该运动员罚球1次的得分X的均值是0.8.例2.分析:先求出X的分布列,再根据定义计算X的均值。解:X的分布列为𝑷(X=k)=16因此,E(X)=16跟踪训练1.[解]X的取值分别为1,2,3,4.X=1,表明李明第一次参加驾照考试就通过了,故P(X=1)=0.6.X=2,表明李明第一次考试未通过,第二次通过了,故P(X=2)=(1-0.6)×0.7=0.28.X=3,表明李明第一、二次考试未通过,第三次通过了,故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096.X=4,表明李明第一、二、三次考试都未通过,故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024.所以李明一年内参加考试次数X的分布列为X1234P0.60.280.0960.024所以X的均值为E(X)=1×0.6+2×0.28+3×0.096+4×0.024=1.544.例3:解:分别用A,B,C表示猜对歌曲A,B,C歌名的事件,A,B,C相互独立(𝑋=0)=(A)=0.2,(𝑋=1000)=(AB)=0.8×0.4=0.32,𝑃(𝑋=3000)=𝑃(𝐴𝐵C)=0.8×0.6×0.6=0.288,(𝑋=6000)=(𝐴𝐵𝐶)=0.8×0.6×0.4=0.192.X的分布列如下表所示:X0100040006000P0.20.480.1280.192𝑋的均值为𝐸(𝑋)=0×0.2+1000×0.32+3000×0.288+6000×0.192=2336.思考:解:如果按ACB的顺序来猜歌,分别用A,B,C表示猜对歌曲A,B,C歌名的事件,A,B,C相互独立;(𝑋=0)=(A)=0.2,(𝑋=1000)=(AC)=0.8×0.4=0.32,𝑃(𝑋=3000)=𝑃(𝐴CB)=0.8×0.4×0.4=0.128,(𝑋=6000)=(𝐴CB)=0.8×0.4×0.6=0.192.X的分布列如下表所示:X0100030006000P0.20.320.2880.192X按由易到难的顺序来猜歌,获得的公益基金的均值最大猜歌顺序E(X)/元猜歌顺序E(X)/元ABC2336BCA2112ACB2144CAB1904BAC2256CBA1872例4.分析:决策目标为总损失(投入费用与设备损失之和)越小越好,根据题意,各种方案在不同状态下的总损失如表所示:天气状况大洪水小洪水没有洪水概率0.010.250.74总损失/元方案1380038003800方案26200020002000方案360000100000方案2和方案3的总损失都是随机变量,可以采用期望总损失最小的方案。解:设方案1、方案2、方案3的总损失分别为X1,X2,X3.采用方案1,无论有无洪水,都损失3800元.因此,P(X1=3800)=1.采用方案2,遇到大洪水时,总损失为2000+6000=62000元;没有大洪水时,总损失为2000元,因此,P(X2=62000)=0.01,P(X2=2000)=0.99.采用方案3,P(X3=60000)=0.01,P(X3=10000)=0.25,P(X3=0)=0.74.于是,E(X1)=3800,E(X2)=62000×0.01+2000×0.99=2600,E(X3)=60000×0.01+10000×0.25+0×0.74=3100.因此,从期望损失最小的角度,应采取方案2.达标检测1.C[E(X)=(-1)×eq\f(1,2)+0×eq\f(1,6)+1×eq\f(1,3)=-eq\f(1,6).]2.解析:X的可能取值为3,2,1,0,P(X=3)=0.6;P(X=2)=0.4×0.6=0.24;P(X=1)=0.42×0.6=0.096;P(X=0)=0.43=0.064.所以E(X)=3×0.6+2×0.24+1×0.096+0×0.064=2.376.答案:C3.解析:因为12+t+13=1,所以t=E(ξ)=1×12+2×16+3×E(η)=E(3ξ+2)=3E(ξ)+2=3×116+2=15答案:154.解析:当l的斜率k=±22时,直线方程为±22x-y+1=0,此时d1=13;k=±3时,直线方程为±3x-y+1=0,此时d2=12;k=±52时,直线方程为±52x-y+1=0,此时d3=X1121P2221所以E(X)=13×2答案:45.解:(1)随机变量ξ的可能取值是2,3,4,5,6,当ξ=4时,其发生的概率最大.因为P(ξ=2)=32P(ξ=3)=2×3P(ξ=4)=32P(ξ=5)=2×3×28P(ξ=6)=22故当ξ=4时满足题意.(2)E(ξ)=2×964+3×932+4×2164+5×3《7.3.1离散型随机变量的均值》基础训练一、选择题1.甲、乙两名射手一次射击得分(分别用X1,X2表示)的分布列如下:甲得分:X1123P0.40.10.5乙得分:X2123P0.10.60.3则甲、乙两人的射击技术相比()A.甲更好B.乙更好C.甲、乙一样好D.不可比较2.设ξ的分布列为ξ1234P又设η=2ξ+5,则E(η)等于()A.B.C.D.3.某人进行一项实验,若实验成功,则停止实验,若实验失败,再重新实验一次,若实验3次均失败,则放弃实验,若此人每次实验成功的概率为,则此人实验次数的期望是()A.B.C.D.4.某企业计划加大技改力度,需更换一台设备,现有两种品牌的设备可供选择,品牌设备需投入60万元,品牌设备需投入90万元,企业对两种品牌设备的使用年限情况进行了抽样调查:品牌的使用年限2345概率0.40.30.20.1品牌的使用年限2345概率0.10.30.40.2更换设备技改后,每年估计可增加效益100万元,从年均收益的角度分析:()A.不更换设备B.更换为设备C.更换为设备D.更换为或设备均可5.(多选题)已知随机变量的分布列为若,则以下结论正确的是()A.B.C.D.6.(多选题)设,随机变量的分布列如下,则下列结论正确的有()012A.随着的增大而增大B.随着的增大而减小C.D.的值最大二、填空题7.设X是一个离散型随机变量,其分布列为:X123P则X的数学期望为_________.8.已知某位运动员投篮一次命中的概率是未命中概率的4倍,设随机变量X为他投篮一次命中的个数,则X的期望是________.9.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲、乙、丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为,则的数学期望为_____.10.“四书”是《大学》《中庸》《论语》《孟子》的合称,又称“四子书”,在世界文化史、思想史上地位极高,所载内容及哲学思想至今仍具有积极意义和参考价值.为弘扬中国优秀传统文化,某校计划开展“四书”经典诵读比赛活动.某班有4位同学参赛,每人从《大学》《中庸》《论语》《孟子》这4本书中选取1本进行准备,且各自选取的书均不相同.比赛时,若这4位同学从这4本书中随机抽取1本选择其中的内容诵读,则抽到自己准备的书的人数的均值为______.三、解答题11.甲乙两人为了培养自己的体育素养,分别进行乒乓球和羽毛球两场比赛,两场比赛中,胜者得2分、败者得0分,每场比赛一定会分出胜负,其中甲在两场比赛中胜出的概率分别为:和,每场比赛相互独立,谁最终得分多谁获胜.(1)求甲获胜的概率;(2)求甲得分的分布列及数学期望.12.某学校组织知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.答案解析一、选择题1.甲、乙两名射手一次射击得分(分别用X1,X2表示)的分布列如下:甲得分:X1123P0.40.10.5乙得分:X2123P0.10.60.3则甲、乙两人的射击技术相比()A.甲更好B.乙更好C.甲、乙一样好D.不可比较【答案】B【详解】因为E(X1)=1×0.4+2×0.1+3×0.5=2.1,E(X2)=1×0.1+2×0.6+3×0.3=2.2,所以E(X2)>E(X1),故乙的射击技术更好.故选:B2.设ξ的分布列为ξ1234P又设η=2ξ+5,则E(η)等于()A.B.C.D.【答案】D【详解】E(ξ)=1×+2×+3×+4×=,所以E(η)=E(2ξ+5)=2E(ξ)+5=2×+5=.3.某人进行一项实验,若实验成功,则停止实验,若实验失败,再重新实验一次,若实验3次均失败,则放弃实验,若此人每次实验成功的概率为,则此人实验次数的期望是()A.B.C.D.【答案】B【详解】由题意可得,每次实验成功的概率为,则失败的概率为,;,,则实验次数的分布列如下:所以此人实验次数的期望是.4.某企业计划加大技改力度,需更换一台设备,现有两种品牌的设备可供选择,品牌设备需投入60万元,品牌设备需投入90万元,企业对两种品牌设备的使用年限情况进行了抽样调查:品牌的使用年限2345概率0.40.30.20.1品牌的使用年限2345概率0.10.30.40.2更换设备技改后,每年估计可增加效益100万元,从年均收益的角度分析:()A.不更换设备B.更换为设备C.更换为设备D.更换为或设备均可【答案】C【详解】设更换为品牌设备使用年限为,则年,更换为品牌设备年均收益为万元;设更换为品牌设备使用年限为,则年,更换为品牌设备年均收益为万元.所以更换为品牌设备,故选:C.5.(多选题)已知随机变量的分布列为若,则以下结论正确的是()A.B.C.D.【答案】ABCD【详解】由分布列性质知:,解得:,B正确;,,A正确;由均值的性质知:,C正确;,D正确.故选:ABCD.6.(多选题)设,随机变量的分布列如下,则下列结论正确的有()012A.随着的增大而增大B.随着的增大而减小C.D.的值最大【答案】BC【详解】由题意,由于,所以随着的增大而减小,A错,B正确;又,所以C正确;时,,而,D错.故选:BC.二、填空题7.设X是一个离散型随机变量,其分布列为:X123P则X的数学期望为_________.【答案】【详解】由得,,∴.8.已知某位运动员投篮一次命中的概率是未命中概率的4倍,设随机变量X为他投篮一次命中的个数,则X的期望是________.【答案】0.8【详解】因为,,所以9.在一个不透明的摸奖箱中有五个分别标有1,2,3,4,5号码的大小相同的小球,现甲、乙、丙三个人依次参加摸奖活动,规定:每个人连续有放回地摸三次,若得到的三个球编号之和恰为4的倍数,则算作获奖,记获奖的人数为,则的数学期望为_____.【答案】【详解】三个球编号之和恰为4的倍数的基本事件:有3种、有6种、有6种、有3种、有3种、有3种、有6种、有1种,而总共有,∴三个球编号之和恰为4的倍数的概率为,由题意,∴的数学期望:.10.“四书”是《大学》《中庸》《论语》《孟子》的合称,又称“四子书”,在世界文化史、思想史上地位极高,所载内容及哲学思想至今仍具有积极意义和参考价值.为弘扬中国优秀传统文化,某校计划开展“四书”经典诵读比赛活动.某班有4位同学参赛,每人从《大学》《中庸》《论语》《孟子》这4本书中选取1本进行准备,且各自选取的书均不相同.比赛时,若这4位同学从这4本书中随机抽取1本选择其中的内容诵读,则抽到自己准备的书的人数的均值为______.【答案】1【详解】记抽到自己准备的书的学生数为,则可能值为0,1,2,4,,,,则.三、解答题11.甲乙两人为了培养自己的体育素养,分别进行乒乓球和羽毛球两场比赛,两场比赛中,胜者得2分、败者得0分,每场比赛一定会分出胜负,其中甲在两场比赛中胜出的概率分别为:和,每场比赛相互独立,谁最终得分多谁获胜.(1)求甲获胜的概率;(2)求甲得分的分布列及数学期望.【答案】(1);(2)分布列见解析;.【详解】(1)设甲获胜的概率为,则.(2)设甲得分数为,则可取值为0,2,4,,,于是分布列为:024于是.12.某学校组织知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.【答案】(1)见解析;(2)类.【详解】(1)由题可知,的所有可能取值为,,.;;.所以的分布列为(2)由(1)知,.若小明先回答问题,记为小明的累计得分,则的所有可能取值为,,.;;.所以.因为,所以小明应选择先回答类问题.《7.3.1离散型随机变量的均值》提高训练一、选择题1.若随机变量X的分布列如下所示X-1012P0.2ab0.3且E(X)=0.8,则a、b的值分别是()A.0.4,0.1B.0.1,0.4C.0.3,0.2D.0.2,0.32.已知随机变量的分布列如下:246若,则()A.B.C.D.3.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A.6B.7.8C.9D.124.多项选择题给出的四个选项中会有多个选项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.若选项中有i(其中)个选项符合题目要求,随机作答该题时(至少选择一个选项)所得的分数为随机变量(其中),则有()A.B.C.D.5.(多选题)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球;否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值可能是()A.B.C.D.6.(多选题)以人工智能、量子信息等颠覆性技术为引领的前沿趋势,将重塑世界工程科技的发展模式,对人类生产力的创新提升意义重大.某公司抓住机遇,成立了甲、乙、丙三个科研小组针对某技术难题同时进行科研攻关,攻克该技术难题的小组都会受到奖励.已知甲、乙、丙三个小组攻克该技术难题的高绿分别为,,,且三个小组各自独立进行科研攻关,则下列说法正确的是()A.甲、乙、丙三个小组均受到奖励的概率为B.只有甲小组受到奖励的概率为C.受到奖励的小组数的期望值等于D.该技术难题被攻克,且只有丙小组受到奖励的概率为二、填空题7.甲、乙两人对同一目标各射击一次,甲命中的概率为,乙命中的概率为,且他们的结果互不影响,若命中目标的人数为,则___________.8.已知随机变量的概率分布如表所示,其中,,成等比数列,当取最大值时,______.0110.在游戏答题规则为:首局胜利得3分,第二局胜利得2分,失败均得1分.如果甲每局胜利的概率为,且答题相互独立,那么甲作答两局的得分期望为______.10.某地有A,B,C,D四人先后感染了新型冠状病毒,其中只有A到过疫区,B肯定是受A感染的.对于C,因为难以断定他是受A还是受B感染的,于是假定他受A和受B感染的概率都是.同样也假定D受A,B和C感染的概率都是.在这种假定之下,B,C,D中直接受A感染的人数X的数学期望为_______.三、解答题11.五一假期,大学生李明与张红两位同学在某景区的游乐场射箭比赛,两人约定:先射中者获胜,比赛结束;或每人都已射击3次时比赛结束经过抽签确定李明先射,根据以往经验,李明每次射箭射中的概率为,张红每次射箭射中的概率为,且各次射箭互不影响.(1)求李明获胜的概率;(2)求射箭比赛结束时李明的射击次数的分布列和数学期望.12.甲、乙两家外卖公司,其送餐员的日工资方案如下:甲公司的底薪80元,每单抽成4元;乙公司无底薪,40单以内(含40单)的部分每单抽成6元,超出40单的部分每单抽成7元,假设同一公司送餐员一天的送餐单数相同,现从两家公司各随机抽取一名送餐员,并分别记录其50天的送餐单数,得到如下频数表:甲公司送餐员送餐单数频数表:送餐单数3839404142天数101510105乙公司送餐员送餐单数频数表:送餐单数3839404142天数51010205若将频率视为概率,回答下列两个问题:(1)记乙公司送餐员日工资为(单位:元),求的分布列和数学期望;(2)小王打算到甲、乙两家公司中的一家应聘送餐员,如果仅从日工资的角度考虑,请利用所学的统计学知识为小王作出选择,并说明理由.答案解析一、选择题1.若随机变量X的分布列如下所示X-1012P0.2ab0.3且E(X)=0.8,则a、b的值分别是()A.0.4,0.1B.0.1,0.4C.0.3,0.2D.0.2,0.3【答案】B【详解】由随机变量X的分布列得:,所以,又因为,解得,所以,故选:B2.已知随机变量的分布列如下:246若,则()A.B.C.D.【答案】B【详解】由,得,由,得,解得.故选:B.3.现有10张奖券,8张2元的、2张5元的,某人从中随机抽取3张,则此人得奖金额的数学期望是()A.6B.7.8C.9D.12【答案】B【详解】设此人得奖金额为X,则X的所有可能取值为12,9,6.P(X=12)==,P(X=9)==,P(X=6)==,故E(X)=12×+9×+6×=7.8.故选:B.4.多项选择题给出的四个选项中会有多个选项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.若选项中有i(其中)个选项符合题目要求,随机作答该题时(至少选择一个选项)所得的分数为随机变量(其中),则有()A.B.C.D.【答案】B【详解】解:当时,的可能情况为0,3,5选择的情况共有:种;,,所以当时,的可能情况为0,3,5选择的情况共有:种;,,所以当时,的可能情况为3,5选择的情况共有:种;,,所以对于AB:,,所以,故A错误,B正确;对于CD:,,所以,故CD错误;故选:B5.(多选题)体育课的排球发球项目考试的规则是:每位学生最多可发球3次,一旦发球成功,则停止发球;否则一直发到3次为止.设学生一次发球成功的概率为p(p≠0),发球次数为X,若X的数学期望E(X)>1.75,则p的取值可能是()A.B.C.D.【答案】AC【详解】由题可知,,,则解得,由可得,故选:AC6.(多选题)以人工智能、量子信息等颠覆性技术为引领的前沿趋势,将重塑世界工程科技的发展模式,对人类生产力的创新提升意义重大.某公司抓住机遇

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论