《6.2.1 排列与排列数》教案、导学案与同步练习_第1页
《6.2.1 排列与排列数》教案、导学案与同步练习_第2页
《6.2.1 排列与排列数》教案、导学案与同步练习_第3页
《6.2.1 排列与排列数》教案、导学案与同步练习_第4页
《6.2.1 排列与排列数》教案、导学案与同步练习_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

《6.2.1排列与排列数》教案【教材分析】本节课选自《2019人教A版高中数学选择性必修第三册》,第六章《计数原理》,本节课主本节课主要学习排列与排列数。排列与组合是在学习了两个计数原理之后,由于排列、组合及二项式定理的研究都是以两个计数原理为基础,同时排列和组合又能进一步简化和优化计数问题。教学的重点是排列的理解,利用计数原理推导排列数公式,难点是运用排列解决实际问题。【教学目标与核心素养】课程目标学科素养A.理解并掌握排列、排列数的概念,能用列举法、树状图法列出简单的排列.B.掌握排列数公式及其变式,并能运用排列数公式熟练地进行相关计算.C.掌握有限制条件的排列应用题的一些常用方法,并能运用排列的相关知识解一些简单的排列应用题.1.数学抽象:排列的概念2.逻辑推理:排列数的性质3.数学运算:运用排列数解决计数问题4.数学建模:将计数问题转化为排列问题【重点与难点】重点:理解排列的定义及排列数的计算难点:运用排列解决计算问题【教学过程】教学过程教学设计一、温故知新两个原理的联系与区别1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.2.区别分类加法计数原理分步乘法计数原理区别一完成一件事共有n类办法,关键词是“分类”完成一件事共有n个步骤,关键词是“分步”区别二每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事区别三各类办法之间是互斥的、并列的、独立的各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复问题1.从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.分析:要完成的一件事是“选出2名同学参加活动,1名参加上午的活动,另1名参加下午的活动”,可以分两个步骤:第1步,确定上午的同学,从3人中任选1人,有3种选法;第2步,确定下午的同学,只能从剩下的2人中去选,有2种选法.根据分步乘法计数原理,不同的选法种数为3×2=6.问题如果把上面问题中被取出的对象叫做元素,则问题可叙述为:从3个不同的元素中任意取出2个,并按一定的顺序排成一列,共有多少种不同的排列方法?问题2.从1,2,3,4这4个数字中选出3个能构成多少个无重复数字的三位数?分析:从4个数中每次取出三个按“百位、十位、个位”的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数,可以分三个步骤解决:第1步,确定百位上的数字,从1、2、3、4这4个数中任取一个,有4种方法;第2步,确定十位上的数字,只能从余下的3个数字中取,有3种方法;第3步,确定个位上的数字,只能从余下的2个数字中取,有2种方法;根据分步乘法计数原理,从1、2、3、4这4个不同的数字中,每次取出3个数字,按百位、十位、个位的顺序排成一列,不同的排列方法为4×3×2=24因而共可得到24个不同的三位数,如图所示同样,问题2可以归结为:从4个不同的元素a,b,c,d中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?所有不同的排列是abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cbd,dab,dac,dba,dbc,dca,dcb,不同的排列方法为4×3×2=24上述问题1,2的共同特点是什么?你能将它们推广到一般情形吗?一、排列的相关概念1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.名师点析理解排列应注意的问题(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按一定顺序排列”.(2)定义中的“一定顺序”说明了排列的本质:有序.1.下列问题中:①10本不同的书分给10名同学,每人一本;②10位同学互通一次电话;③10位同学互通一封信;④10个没有任何三点共线的点构成的线段.属于排列的有()A.1个B.2个 C.3个 D.4个解析:由排列的定义可知①③是排列,②④不是排列.答案:B二、典例解析例1.某省中学足球队赛预选赛每组有6支队,每支队都要与同组的其他各队在主、客场分别比赛1场,那么每组共进行多少场比赛?分析:每组任意2支队之间进行的1场比赛,可以看作是从该组6支队中选取2支,按“主队、客队”的顺序排成的一个排列.解:可以先从这6支队中选1支为主队,然后从剩下的5支队中选1支为客队.按分步乘法计数原理,每组进行的比赛场数为6×5=30.例2.(1)一张餐桌上有5盘不同的菜,甲、乙、丙3名同学每人从中各取1盘菜,共有多少种不同的取法?(2)学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同学每人从中选一种,共有多少种不同的选法?分析:3名同学每人从5盘不同的菜中取1盘菜,可看作是从这5盘菜中任取3盘,放在3个位置(给3名同学)的一个排列;而3名同学每人从食堂窗口的5种菜中选1种,每人都有5种选法,不能看成一个排列.解:(1)可以先从这5盘菜中取1盘给同学甲,然后从剩下的4盘菜中取1盘给同学乙,最后从剩下的3盘菜中取1盘给同学丙.按分步乘法计数原理,不同的取法种数为5×4×3=60.(2)可以先让同学甲从5种菜中选1种,有5种选法;再让同学乙从5种菜中选1种,也有5种选法;最后让同学丙从5种菜中选1种,同样有5种选法.按分步乘法计数原理,不同的取法种数为5×5×5=125.二、排列数与排列数公式1.排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号An2.排列数公式:Anm=n(n-1)(n-2)…(n-m+1)=n!(n-m)!3.全排列和阶乘:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列.这时,排列数公式中m=n,即有Ann=n(n-1)(n-2)×…×3×2×1.也就是说,将n个不同的元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用n!表示.于是,n个元素的全排列数公式可以写成Ann=n!问题3.你认为“排列”和“排列数”是同一个概念吗?它们有什么区别?“排列”与“排列数”是两个不同的概念,一个排列是指“从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数”,它是一个数.例3.计算:(1)A解:根据排列数公式,可得(1)A73(2)A74(3)A77(4)A由例3可以看出,A77A观察这两个结果,从中你发现它们的共性了吗?事实上,A==An例4.用0~9这10个数字,可以组成多少个没有重复数字的三位数?分析:在0~9这10个数字中,因为0不能在百位上,而其他9个数字可以在任意数位上,因此0是一个特殊的元素。一般地,我们可以从特殊元素的位置入手来考虑问题。解法1:由于三位数的百位上的数字不能是0,所以可以分两步完成:第1步,确定百位上的数字可以从1~9这9个数字中取出1个,有A91种取法;第2步,确定十位和个位上的数字,可以从剩下的9个数中取2个,有根据分步乘法计数原理,所求的三位数的个数为A91×A9解法2:如图,符合条件的三位数可以分成三类:第1类,每一位数字都不是0的三位数,可以从1~9这9个数字中取出3个,有A93种取法;第2类,个位上的数字是0的三位数,可以从剩下的9个数中取出2个放在百位和十位,有A92种取法;第3类,十位上的数字是0的三位数,可以从剩下的9个数字中取出2个放在百位和个位,有解法3:从0~9这10个数字中选取3个的排列数为A103,其中0在百位上的排列数为即所求三位数的个数为A103-A921.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.跟踪训练有语文、数学、英语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有多少种不同的安排方法?解:(方法一分类法)分两类:第1类,化学被选上,有A3第2类,化学不被选上,有A5故共有A3(方法二分步法)第1步,第四节有A51种排法;第2步,其余三节有A5(方法三间接法)从6门课程中选4门安排在上午,有A64种排法,而化学排第四节,有A5通过引导学生回顾计数原理,进一步比较分析加深对两个计数原理得理解。通过具体问题,分析、比较、归纳出对排列的概念。发展学生数学运算,数学抽象和数学建模的核心素养。在典例分析和练习中让学生熟悉排列和排列数的概念,进而灵活运用排列数解决问题。发展学生逻辑推理,直观想象、数学抽象和数学运算的核心素养。三、达标检测1.从5本不同的书中选两本送给2名同学,每人一本,则不同的送书方法的种数为()A.5 B.10 C.20 D.60解析:此问题相当于从5个不同元素中取出2个元素的排列数,即共有A5答案:C2.设m∈N*,且m<15,则A20A.(20-m)(21-m)(22-m)(23-m)(24-m)(25-m)B.(20-m)(19-m)(18-m)(17-m)(16-m)C.(20-m)(19-m)(18-m)(17-m)(16-m)(15-m)D.(19-m)(18-m)(17-m)(16-m)(15-m)解析:A20-m答案:C3.某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场,乙和丙必须排在相邻的顺序出场,不同的演出顺序共有()A.24种 B.144种 C.48种 D.96种解析:第1步,先安排甲有A21种不同的演出顺序;第2步,安排乙和丙有A22A答案:D4.有8种不同的菜种,任选4种种在不同土质的4块地里,有种不同的种法.解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A8答案:16805.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6500的有多少个?解:(1)偶数的个位数只能是2、4、6,有A31种排法,其他位上有A63种排法,由分步乘法计数原理,知共有四位偶数A31·(2)最高位上是7时大于6500,有A63种,最高位上是6时,百位上只能是7或5,故有2×A52种.由分类加法计数原理知,这些四位数中大于6500的共有A6通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、直观想象、数学建模的核心素养。四、小结通过总结,让学生进一步巩固本节所学内容,提高概括能力。【教学反思】在本节课的教学中,学生可能遇到的问题(或困难、障碍)是综合应用两个计数原理,产生这一问题的原因是不能根据问题的特征选择对应的原理。要解决这一问题,就要要通过典型的、学生比较熟悉的实例,经过概括得出两个计数原理,然后从单一到综合的方式,安排例题,其中关键是从单一到综合,引导学生体会两个计数原理的基本思想。《6.2.1排列与排列数》导学案【学习目标】1.理解并掌握排列、排列数的概念,能用列举法、树状图法列出简单的排列.2.掌握排列数公式及其变式,并能运用排列数公式熟练地进行相关计算.3.掌握有限制条件的排列应用题的一些常用方法,并能运用排列的相关知识解一些简单的排列应用题.【重点与难点】重点:理解排列的定义及排列数的计算难点:运用排列解决计算问题【知识梳理】两个原理的联系与区别1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.2.区别分类加法计数原理分步乘法计数原理区别一完成一件事共有n类办法,关键词是“分类”完成一件事共有n个步骤,关键词是“分步”区别二每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事区别三各类办法之间是互斥的、并列的、独立的各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复一、排列的相关概念1.排列:一般地,从n个不同元素中取出m(m≤n)个元素,并按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列.2.相同排列:两个排列的元素完全相同,且元素的排列顺序也相同.名师点析理解排列应注意的问题(1)排列的定义中包括两个基本内容,一是“取出元素”,二是“按一定顺序排列”.(2)定义中的“一定顺序”说明了排列的本质:有序.二、排列数与排列数公式1.排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号An2.排列数公式:Anm=n(n-1)(n-2)…(n-m+1)=n!(n-m)!3.全排列和阶乘:n个不同元素全部取出的一个排列,叫做n个元素的一个全排列.这时,排列数公式中m=n,即有Ann=n(n-1)(n-2)×…×3×2×1.也就是说,将n个不同的元素全部取出的排列数,等于正整数1到n的连乘积.正整数1到n的连乘积,叫做n的阶乘,用n!表示.于是,n个元素的全排列数公式可以写成Ann=n!1.下列问题中:①10本不同的书分给10名同学,每人一本;②10位同学互通一次电话;③10位同学互通一封信;④10个没有任何三点共线的点构成的线段.属于排列的有()A.1个B.2个C.3个D.4个【学习过程】一、问题探究问题1.从甲、乙、丙三名同学中选出2人参加一项活动,其中1名同学参加上午的活动,另1名同学参加下午的活动.如果把上面问题中被取出的对象叫做元素,则问题可叙述为:从3个不同的元素中任意取出2个,并按一定的顺序排成一列,共有多少种不同的排列方法?问题2.从1,2,3,4这4个数字中选出3个能构成多少个无重复数字的三位数?同样,问题2可以归结为:从4个不同的元素a,b,c,d中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?问题3.你认为“排列”和“排列数”是同一个概念吗?它们有什么区别?二、典例解析例1.某省中学足球队赛预选赛每组有6支队,每支队都要与同组的其他各队在主、客场分别比赛1场,那么每组共进行多少场比赛?例2.(1)一张餐桌上有5盘不同的菜,甲、乙、丙3名同学每人从中各取1盘菜,共有多少种不同的取法?(2)学校食堂的一个窗口共卖5种菜,甲、乙、丙3名同学每人从中选一种,共有多少种不同的选法?例3.计算:(1)A例4.用0~9这10个数字,可以组成多少个没有重复数字的三位数?1.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.跟踪训练有语文、数学、英语、物理、化学、生物6门课程,从中选4门安排在上午的4节课中,其中化学不排在第四节,共有多少种不同的安排方法?【达标检测】1.从5本不同的书中选两本送给2名同学,每人一本,则不同的送书方法的种数为()A.5B.10C.20D.602.设m∈N*,且m<15,则A20A.(20-m)(21-m)(22-m)(23-m)(24-m)(25-m)B.(20-m)(19-m)(18-m)(17-m)(16-m)C.(20-m)(19-m)(18-m)(17-m)(16-m)(15-m)D.(19-m)(18-m)(17-m)(16-m)(15-m)3.某次演出共有6位演员参加,规定甲只能排在第一个或最后一个出场,乙和丙必须排在相邻的顺序出场,不同的演出顺序共有()A.24种B.144种C.48种D.96种4.有8种不同的菜种,任选4种种在不同土质的4块地里,有种不同的种法.5.用1、2、3、4、5、6、7这7个数字组成没有重复数字的四位数.(1)这些四位数中偶数有多少个?能被5整除的有多少个?(2)这些四位数中大于6500的有多少个?【课堂小结】【参考答案】知识梳理1.解析:由排列的定义可知①③是排列,②④不是排列.答案:B学习过程一、问题探究问题1.分析:要完成的一件事是“选出2名同学参加活动,1名参加上午的活动,另1名参加下午的活动”,可以分两个步骤:第1步,确定上午的同学,从3人中任选1人,有3种选法;第2步,确定下午的同学,只能从剩下的2人中去选,有2种选法.根据分步乘法计数原理,不同的选法种数为3×2=6.问题问题2.分析:从4个数中每次取出三个按“百位、十位、个位”的顺序排成一列,就得到一个三位数.因此有多少种不同的排列方法就有多少个不同的三位数,可以分三个步骤解决:第1步,确定百位上的数字,从1、2、3、4这4个数中任取一个,有4种方法;第2步,确定十位上的数字,只能从余下的3个数字中取,有3种方法;第3步,确定个位上的数字,只能从余下的2个数字中取,有2种方法;根据分步乘法计数原理,从1、2、3、4这4个不同的数字中,每次取出3个数字,按百位、十位、个位的顺序排成一列,不同的排列方法为4×3×2=24因而共可得到24个不同的三位数,如图所示同样,问题2可以归结为:从4个不同的元素a,b,c,d中任意取出3个,并按一定的顺序排成一列,共有多少种不同的排列方法?abc,abd,acb,acd,adb,adc,bac,bad,bca,bcd,bda,bdc,cab,cad,cba,cbd,cda,cbd,dab,dac,dba,dbc,dca,dcb,不同的排列方法为4×3×2=24上述问题1,2的共同特点是什么?你能将它们推广到一般情形吗?问题3.“排列”与“排列数”是两个不同的概念,一个排列是指“从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数”,它是一个数.二、典例解析例1.分析:每组任意2支队之间进行的1场比赛,可以看作是从该组6支队中选取2支,按“主队、客队”的顺序排成的一个排列.解:可以先从这6支队中选1支为主队,然后从剩下的5支队中选1支为客队.按分步乘法计数原理,每组进行的比赛场数为6×5=30.例2.分析:3名同学每人从5盘不同的菜中取1盘菜,可看作是从这5盘菜中任取3盘,放在3个位置(给3名同学)的一个排列;而3名同学每人从食堂窗口的5种菜中选1种,每人都有5种选法,不能看成一个排列.解:(1)可以先从这5盘菜中取1盘给同学甲,然后从剩下的4盘菜中取1盘给同学乙,最后从剩下的3盘菜中取1盘给同学丙.按分步乘法计数原理,不同的取法种数为5×4×3=60.(2)可以先让同学甲从5种菜中选1种,有5种选法;再让同学乙从5种菜中选1种,也有5种选法;最后让同学丙从5种菜中选1种,同样有5种选法.按分步乘法计数原理,不同的取法种数为5×5×5=125.问题3.“排列”与“排列数”是两个不同的概念,一个排列是指“从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列”,它不是一个数,而是具体的一件事.“排列数”是指“从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数”,它是一个数.例3.解:根据排列数公式,可得(1)A73(2)A74(3)A77(4)A由例3可以看出,A77A观察这两个结果,从中你发现它们的共性了吗?事实上,A==An例4.分析:在0~9这10个数字中,因为0不能在百位上,而其他9个数字可以在任意数位上,因此0是一个特殊的元素。一般地,我们可以从特殊元素的位置入手来考虑问题。解法1:由于三位数的百位上的数字不能是0,所以可以分两步完成:第1步,确定百位上的数字可以从1~9这9个数字中取出1个,有A91种取法;第2步,确定十位和个位上的数字,可以从剩下的9个数中取2个,有根据分步乘法计数原理,所求的三位数的个数为A91×A9解法2:如图,符合条件的三位数可以分成三类:第1类,每一位数字都不是0的三位数,可以从1~9这9个数字中取出3个,有A93种取法;第2类,个位上的数字是0的三位数,可以从剩下的9个数中取出2个放在百位和十位,有A92种取法;第3类,十位上的数字是0的三位数,可以从剩下的9个数字中取出2个放在百位和个位,有解法3:从0~9这10个数字中选取3个的排列数为A103,其中0在百位上的排列数为即所求三位数的个数为A103-A921.此类题目从不同的视角可以选择不同的方法,我们用各种方法解决这个题的目的是:希望通过对本题的感悟,能掌握更多的解决这类问题的方法.2.元素分析法最基本,位置分析法对重要元素区别对待,间接法对对立面比较容易求解的题目特别实用.跟踪训练解:(方法一分类法)分两类:第1类,化学被选上,有A3第2类,化学不被选上,有A5故共有A3(方法二分步法)第1步,第四节有A51种排法;第2步,其余三节有A5(方法三间接法)从6门课程中选4门安排在上午,有A64种排法,而化学排第四节,有A5达标检测1.解析:此问题相当于从5个不同元素中取出2个元素的排列数,即共有A5答案:C2.解析:A20-m答案:C3.解析:第1步,先安排甲有A21种不同的演出顺序;第2步,安排乙和丙有A22A答案:D4.解析:将4块不同土质的地看作4个不同的位置,从8种不同的菜种中任选4种种在4块不同土质的地里,则本题即为从8个不同元素中任选4个元素的排列问题,所以不同的种法共有A8答案:16805.解:(1)偶数的个位数只能是2、4、6,有A31种排法,其他位上有A63种排法,由分步乘法计数原理,知共有四位偶数A31·(2)最高位上是7时大于6500,有A63种,最高位上是6时,百位上只能是7或5,故有2×A52种.由分类加法计数原理知,这些四位数中大于6500的共有A6《6.2.1排列与排列数》基础训练一、选择题1.下列问题中属于排列问题的是().A.从个人中选出人去劳动B.从个人中选出2人去参加数学竞赛C.从班级内名男生中选出人组成一个篮球队D.从数字5、、、中任取2个不同的数做中的底数与真数2.可表示为()A.B.C.D.3.已知,则().A.B.C.D.4.某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有()A.72种B.48种C.36种D.24种5.(多选题)5人并排站成一行,如果甲、乙两个人不相邻,那么不同的排法种数可以是()A.B.60C.72D.6.(多选题)对于正整数,定义“”如下:当为偶数时,;当为奇数时,;则下列命题中正确的是()A.B.C.的个位数是0D.的个位数是5二、填空题7.54_____.8.用数字1,2,3,4,6可以组成无重复数字的五位偶数有______个.(用数字作答)9.省实验中学为预防秋季流感爆发,计划安排学生在校内进行常规体检,共有3个检查项目,需要安排在3间空教室进行检查,学校现有一排6间的空教室供选择使用,但是为了避免学生拥挤,要求作为检查项目的教室不能相邻,则共有______种安排方式.(用数字作答)10.某年级举办线上小型音乐会,由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目丙必须排在节目乙的下一个,则该小型音乐会节目演出顺序的编排方案共有______种.(用数字作答)三、解答题11.(1)解不等式;(2)解方程.12.一场小型晚会有个唱歌节目和个相声节目,要求排出一个节目单.(1)个相声节目要排在一起,有多少种排法?(2)第一个节目和最后一个节目都是唱歌节目,有多少种排法?(3)前个节目中要有相声节目,有多少种排法?答案解析一、选择题1.下列问题中属于排列问题的是().A.从个人中选出人去劳动B.从个人中选出2人去参加数学竞赛C.从班级内名男生中选出人组成一个篮球队D.从数字5、、、中任取2个不同的数做中的底数与真数【答案】D【详解】A.从个人中选出人去劳动,与顺序无关,故错误;B.从个人中选出2人去参加数学竞赛,与顺序无关,故错误;C.从班级内名男生中选出人组成一个篮球队,与顺序无关,故错误;D.从数字5、、、中任取2个不同的数做中的底数与真数,底数与真数位置不同,即与顺序有关,故正确;故选:D2.可表示为()A.B.C.D.【答案】C【详解】.3.已知,则().A.B.C.D.【答案】C【详解】,则,约分得:,解得:,经检验满足题意.4.某节目组决定把《将进酒》《山居秋暝》《望岳》《送杜少府之任蜀州》和另外确定的两首诗词排在后六场做节目开场诗词,并要求《将进酒》与《望岳》相邻,且《将进酒》排在《望岳》的前面,《山居秋暝》与《送杜少府之任蜀州》不相邻,且均不排在最后,则后六场开场诗词的排法有()A.72种B.48种C.36种D.24种【答案】C【详解】首先可将《将进酒》与《望岳》捆绑在一起和另外确定的两首诗词进行全排列,共有种排法,再将《山居秋暝》与《送杜少府之任蜀州》插排在3个空里(最后一个空不排),共有种排法,则后六场开场诗词的排法有种,故选:C.5.(多选题)5人并排站成一行,如果甲、乙两个人不相邻,那么不同的排法种数可以是()A.B.60C.72D.【答案】AC【详解】先除去甲、乙两人,将剩下的3人全排,共=3×2×1=6种不同的排法,再将甲、乙两人从产生的4个空中选2个插入共=12种不同的排法,所以5人并排站成一行,如果甲、乙两个人不相邻,那么不同的排法种数是=6×12=72,故选:AC.6.(多选题)对于正整数,定义“”如下:当为偶数时,;当为奇数时,;则下列命题中正确的是()A.B.C.的个位数是0D.的个位数是5【答案】ABCD【详解】A.,正确;B.,正确;C.的个位数是0,正确;D.的个位数是5;正确的是ABCD.二、填空题7.54_____.【答案】348【详解】.8.数字1,2,3,4,6可以组成无重复数字的五位偶数有______个.(用数字作答)【答案】72【详解】满足条件的五位偶数有:.9.省实验中学为预防秋季流感爆发,计划安排学生在校内进行常规体检,共有3个检查项目,需要安排在3间空教室进行检查,学校现有一排6间的空教室供选择使用,但是为了避免学生拥挤,要求作为检查项目的教室不能相邻,则共有______种安排方式.(用数字作答)【答案】24【详解】6间空教室,有3个空教室不使用,故可把作为检查项目的教室插入3个不使用的教室之间,故所有不同的安排方式的总数为.10.某年级举办线上小型音乐会,由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目丙必须排在节目乙的下一个,则该小型音乐会节目演出顺序的编排方案共有______种.(用数字作答)【答案】42【详解】由题意知,甲的位置影响乙的排列,∴①甲排在第一位共有种,②甲排在第二位共有种,∴故编排方案共有种.故答案为:42.三、解答题11.(1)解不等式;(2)解方程.【答案】(1)8(2)3【解析】(1)由,得,化简得x2-19x+84<0,解之得7<x<12,①又∴2<x≤8,②由①②及x∈N*得x=8.(2)因为所以x≥3,,由得(2x+1)2x(2x-1)(2x-2)=140x(x-1)(x-2).化简得,4x2-35x+69=0,解得x1=3,(舍去).所以方程的解为x=3.12.一场小型晚会有个唱歌节目和个相声节目,要求排出一个节目单.(1)个相声节目要排在一起,有多少种排法?(2)第一个节目和最后一个节目都是唱歌节目,有多少种排法?(3)前个节目中要有相声节目,有多少种排法?【详解】(1)把两个相声节目捆绑在一起作为一个节目与其他节目排列共有排法;(2)选两个唱歌节目排在首尾,剩下的3个节目在中间排列,排法为;(3)5个节目全排列减去后两个都是相声的排法,共有.《6.2.1排列与排列数》提高训练一、选择题1.用数字1,2,3,4,6可以组成无重复数字的五位偶数有()A.48个B.64个C.72个D.90个2.若a∈N+,且a<20,则(27-a)(28-a)…(34-a)等于()A.B.C.D.3.在某校举行的秋季运动会中,有甲,乙,丙,丁四位同学参加了50米短跑比赛.现将四位同学安排在1,2,3,4这4个跑道上,每个跑道安排一名同学,则甲不在1道,乙不在2道的不同安排方法有()种.A.12B.14C.16D.184.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有()A.20种B.30种C.40种D.60种5.(多选题)由0,1,2,3,4,5,6,7,8,9这10个数字组成无重复数字的五位数,其中偶数的个数是()A.B.C.D.6.(多选题)A、B、C、D、E五个人并排站在一起,则下列说法正确的有()A.若A、B不相邻共有72种方法B.若A不站在最左边,B不站最右边,有78种方法.C.若A在B左边有60种排法D.若A、B两人站在一起有24种方法二、填空题7.设,,则等式中_____.8.从2,4,6,8,10这五个数中,每次取出两个不同的数分别为,共可得到的不同值的个数是_______个.9.北京大兴国际机场拥有世界上最大的单一航站楼,并拥有机器人自动泊车系统,解决了停车满、找车难的问题,现有4辆载有救援物资的车辆可以停放在8个并排的泊车位上,要求停放的车辆相邻,箭头表示车头朝向,则不同的泊车方案有____种.(用数字作答)10.为弘扬我国古代的“六艺文化”,某学校欲利用每周的社团活动课可设“礼”“乐”“射”“御”“书”“数”6门课程,每周开设一门,连续开设六周.若课程“乐”不排在第一周,课程“书”排在第三周或第四周,则所有可能的排法种数为_______.三、解答题11.8人围圆桌开会,其中正、副组长各1人,记录员1人.(1)若正、副组长相邻而坐,有多少种坐法?(2)若记录员坐于正、副组长之间(三者相邻),有多少种坐法?12.把1、2、3、4、5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排成一个数列.(1)45312是这个数列的第几项?(2)这个数列的第71项是多少?(3)求这个数列的各项和.答案解析一、选择题1.用数字1,2,3,4,6可以组成无重复数字的五位偶数有()A.48个B.64个C.72个D.90个【答案】C【详解】满足条件的五位偶数有:.2.若a∈N+,且a<20,则(27-a)(28-a)…(34-a)等于()A.B.C.D.【答案】D【详解】.故选:D3.在某校举行的秋季运动会中,有甲,乙,丙,丁四位同学参加了50米短跑比赛.现将四位同学安排在1,2,3,4这4个跑道上,每个跑道安排一名同学,则甲不在1道,乙不在2道的不同安排方法有()种.A.12B.14C.16D.18【答案】B【详解】①甲在2道的安排方法有:种;②甲不在2道,则甲只能在3或4号道,乙不能在2道,只能在剩下的2个道中选择一个,丙丁有2种,所以甲不在2号跑道的分配方案有种,共有种方案.故选B.4.甲、乙、丙3位志愿者安排在周一至周五的5天中参加某项志愿者活动,要求每人参加一天且每天至多安排一人,并要求甲安排在另外两位前面,不同的安排方法共有()A.20种B.30种C.40种D.60种【答案】A【详解】解:根据题意,要求甲安排在另外两位前面,则甲有3种分配方法,即甲在星期一、二、三;分3种情况讨论可得,甲在星期一有A42=12种安排方法,甲在星期二有A32=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论