版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
试卷第=page22页,共=sectionpages22页资料整理【淘宝店铺:向阳百分百】试卷第=page11页,共=sectionpages11页资料整理【淘宝店铺:向阳百分百】中考数学几何专项练习:最值问题之隐圆一、填空题1.如图,四边形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0是四边形SKIPIF1<0内的一个动点,满足SKIPIF1<0,则SKIPIF1<0面积的最小值为.【答案】SKIPIF1<0【分析】取SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延长线于点SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,则SKIPIF1<0,通过计算得出当SKIPIF1<0三点共线时,SKIPIF1<0有最小值,求出最小值即可.【详解】解:如图,取SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0交SKIPIF1<0的延长线于点SKIPIF1<0,过点SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,交SKIPIF1<0于SKIPIF1<0,则SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0四边形SKIPIF1<0为等腰梯形,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0点SKIPIF1<0在以点SKIPIF1<0为圆心,2为半径的圆上,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0,SKIPIF1<0当SKIPIF1<0三点共线时,SKIPIF1<0有最小值SKIPIF1<0,SKIPIF1<0SKIPIF1<0面积的最小值为SKIPIF1<0.【点睛】本题考查了解直角三角形、隐圆、直角三角形的性质等知识点,点SKIPIF1<0位置的确定是解题关键.2.如图,点A,B的坐标分别为SKIPIF1<0为坐标平面内一点,SKIPIF1<0,M为线段SKIPIF1<0的中点,连接SKIPIF1<0,当SKIPIF1<0取最大值时,点M的坐标为.【答案】SKIPIF1<0【分析】根据题意可知:点C在半径为SKIPIF1<0的⊙B上.在x轴上取OD=OA=6,连接CD,易证明OM是△ACD的中位线,即得出OM=SKIPIF1<0CD,即当OM最大时,CD最大,由D,B,C三点共线时,即当C在DB的延长线上时,OM最大,根据勾股定理求出BD的长,从而可求出CD的长,最后即可求出OM的最大值.【详解】解:如图,∵点C为坐标平面内一点,SKIPIF1<0,∴C在⊙B上,且半径为SKIPIF1<0,在x轴上取OD=OA=6,连接CD,∵AM=CM,OD=OA,∴OM是△ACD的中位线,∴OM=SKIPIF1<0CD,∴即当OM最大时,CD最大,而D,B,C三点共线时,即当C在DB的延长线上时,OM最大,∵OB=OD=6,∠BOD=90°,∴BD=SKIPIF1<0,∴CD=SKIPIF1<0,且C(2,8),∴OM=SKIPIF1<0CDSKIPIF1<0,即OM的最大值为SKIPIF1<0,∵M是AC的中点,则M(4,4),故答案为:(4,4).【点睛】本题考查坐标和图形,三角形的中位线定理,勾股定理等知识.确定OM为最大值时点C的位置是解题关键,也是难点.3.如图,在矩形SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,点SKIPIF1<0、SKIPIF1<0分别是边SKIPIF1<0、SKIPIF1<0上的动点,且SKIPIF1<0,点SKIPIF1<0是SKIPIF1<0的中点,SKIPIF1<0、SKIPIF1<0,则四边形SKIPIF1<0面积的最小值为.【答案】38【分析】首先连接AC,过B作BH⊥AC于H,当G在BH上时,三角形ACG面积取最小值,此时四边形AGCD面积取最小值,再连接BG,知BG=2,得到G点轨迹圆,该轨迹与BH交点即为所求最小值时的G点,利用面积法求出BH、GH的长,代入三角形面积公式求解即可.【详解】解:连接SKIPIF1<0,过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0,当G在BH上时,△ACG面积取最小值,此时四边形AGCD面积取最小值,四边形AGCD面积=三角形ACG面积+三角形ACD面积,即四边形AGCD面积=三角形ACG面积+24.连接BG,由G是EF中点,EF=4知,BG=2,故G在以SKIPIF1<0为圆心,SKIPIF1<0为半径的圆弧上,圆弧交SKIPIF1<0于SKIPIF1<0,此时四边形AGCD面积取最小值,如图所示,由勾股定理得:AC=10,∵SKIPIF1<0AC·BH=SKIPIF1<0AB·BC,∴BH=4.8,∴SKIPIF1<0,即四边形SKIPIF1<0面积的最小值=SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查了勾股定理及矩形中的与动点相关的最值问题,解题的关键是利用直角三角形斜边的直线等于斜边的一半确定出SKIPIF1<0点的运动轨迹.4.如图,在△ABC中,∠C=90°,AC=8,AB=10,D是AC上一点,且CD=3,E是BC边上一点,将△DCE沿DE折叠,使点C落在点F处,连接BF,则BF的最小值为.【答案】SKIPIF1<0/SKIPIF1<0【分析】先由折叠判断出F的运动轨迹是为以D为圆心,CD的长度为半径的圆,当B、D、F共线且F在B、D之间时BF最小,根据勾股定理及圆的性质求出此时BD、BF的长度即可.【详解】解:由折叠知,F点的运动轨迹为:以D为圆心,CD的长度为半径的圆,如图所示,可知,当点B、D、F共线,且F在B、D之间时,BF取最小值,∵∠C=90°,AC=8,AB=10,∴BC=6,在Rt△BCD中,由勾股定理得:BD=SKIPIF1<0,∴BF=BD-DF=SKIPIF1<0,故答案为:SKIPIF1<0.【点睛】本题考查了折叠的性质、圆的性质、勾股定理解直角三角形的知识,该题涉及的最值问题属于中考常考题型,根据折叠确定出F点运动轨迹是解题关键.5.如图,已知SKIPIF1<0,外心为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,分别以SKIPIF1<0,SKIPIF1<0为腰向形外作等腰直角三角形SKIPIF1<0与SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0交于点SKIPIF1<0,则SKIPIF1<0的最小值是.【答案】SKIPIF1<0【分析】由SKIPIF1<0与SKIPIF1<0是等腰直角三角形,得到SKIPIF1<0,SKIPIF1<0,根据全等三角形的性质得到SKIPIF1<0,求得在以SKIPIF1<0为直径的圆上,由SKIPIF1<0的外心为SKIPIF1<0,SKIPIF1<0,得到SKIPIF1<0,如图,当SKIPIF1<0时,SKIPIF1<0的值最小,解直角三角形即可得到结论.【详解】解:SKIPIF1<0与SKIPIF1<0是等腰直角三角形,SKIPIF1<0,SKIPIF1<0,在SKIPIF1<0与SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0≌SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0在以SKIPIF1<0为直径的圆上,SKIPIF1<0的外心为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,如图,当SKIPIF1<0时,SKIPIF1<0的值最小,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0,SKIPIF1<0.则SKIPIF1<0的最小值是SKIPIF1<0,故答案为:SKIPIF1<0.【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.6.如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF=4,点G为线段EF的中点,连接BG、CG,则BG+SKIPIF1<0CG的最小值为.【答案】5【分析】因为DG=SKIPIF1<0EF=2,所以G在以D为圆心,2为半径圆上运动,取DI=1,可证△GDI∽△CDG,从而得出GI=SKIPIF1<0CG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在Rt△DEF中,G是EF的中点,∴DG=SKIPIF1<0,∴点G在以D为圆心,2为半径的圆上运动,在CD上截取DI=1,连接GI,∴SKIPIF1<0=SKIPIF1<0=SKIPIF1<0,∴∠GDI=∠CDG,∴△GDI∽△CDG,∴SKIPIF1<0=SKIPIF1<0,∴IG=SKIPIF1<0,∴BG+SKIPIF1<0=BG+IG≥BI,∴当B、G、I共线时,BG+SKIPIF1<0CG最小=BI,在Rt△BCI中,CI=3,BC=4,∴BI=5,故答案是:5.【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点SKIPIF1<0的运动轨迹是解题的关键.7.如图,在锐角△ABC中,AB=2,AC=SKIPIF1<0,∠ABC=60°.D是平面内一动点,且∠ADB=30°,则CD的最小值是【答案】SKIPIF1<0/SKIPIF1<0【分析】作AH⊥BC于H,证明△ACH为等腰直角三角形,求得BC=SKIPIF1<0+1,在BC上截取BO=AB=2,则△OAB为等边三角形,以O为圆心,2为半径作⊙O,根据∠ADB=30°,可得点D在⊙O上运动,当DB经过圆心O时,CD最小,其最小值为⊙O的直径减去BC的长.【详解】解:如图,作AH⊥BC于H,∵AB=2,AC=SKIPIF1<0,∠ABC=60°,∴BH=SKIPIF1<0AB=1,∴AH=SKIPIF1<0,CH=SKIPIF1<0,∴△ACH为等腰直角三角形,∴∠ACB=45°,BC=CH+BH=SKIPIF1<0+1,在BC上截取BO=AB=2,则△OAB为等边三角形,以O为圆心,2为半径作⊙O,∵∠ADB=30°,∴点D在⊙O上运动,当DB经过圆心O时,CD最小,最小值为4-(SKIPIF1<0+1)=3-SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,等腰直角三角形的判定和性质,圆周角定理.解题的关键是得出点D在⊙O上运动.8.如图,在四边形ABCD中,∠BAD=∠BCD=90°,∠ACD=30°,AD=2,E是AC的中点,连接DE,则线段DE长度的最小值为.【答案】SKIPIF1<0【分析】先判断出四边形ABCD是圆内接四边形,得到∠ACD=∠ABD=30°,根据题意知点E在以FG为直径的⊙P上,连接PD交⊙P于点E,此时DE长度取得最小值,证明∠APD=90°,利用含30度角的直角三角形的性质求解即可.【详解】解:∵∠BAD=∠BCD=90°,∴四边形ABCD是圆内接四边形,∴∠ACD=∠ABD=30°,∴∠ADB=60°,∵AD=2,∴BD=2AD=4,分别取AB、AD的中点F、G,并连接FG,EF,EG,∵E是AC的中点,∴EF∥BC,EG∥CD,∴∠AEF=∠ACB,∠AEG=∠ACD,∴∠AEF+∠AEG=∠ACB+∠ACD=90°,即∠FEG=90°,∴点E在以FG为直径的⊙P上,如图:当点E恰好在线段PD上,此时DE的长度取得最小值,连接PA,∵F、G分别是AB、AD的中点,∴FG∥BD,FG=SKIPIF1<0BD=2,∴∠ADB=∠AGF=60°,∵PA=PG,∴△APG是等边三角形,∴∠APG=60°,∵PG=GD=GA,且∠AGF=60°,∴∠GPD=∠GDP=30°,∴∠APD=90°,∴PD=SKIPIF1<0,∴DE长度的最小值为(SKIPIF1<0).故答案为:(SKIPIF1<0).【点睛】本题考查了圆周角定理,圆内接四边形的性质,等边三角形的判定和性质,含30度角的直角三角形的性质,得到点E在以FG为直径的⊙P上是解题的关键.9.如图,点SKIPIF1<0,SKIPIF1<0的坐标分别为SKIPIF1<0,SKIPIF1<0,SKIPIF1<0为坐标平面内一动点,且SKIPIF1<0,点SKIPIF1<0为线段SKIPIF1<0的中点,连接SKIPIF1<0,当SKIPIF1<0取最大值时,点SKIPIF1<0的纵坐标为.【答案】SKIPIF1<0【分析】根据同圆的半径相等可知:点C在半径为2的⊙B上,通过画图可知,C在AB的延长线上时,AC最大,根据中点坐标公式可得结论.【详解】解:如图,∵点C为坐标平面内一点,BC=2,∴C在⊙B上,且半径为2,∴当C在AB的延长线上时,AC最大,过点C作CD⊥x轴,∵点SKIPIF1<0,SKIPIF1<0的坐标分别为SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0.∵CD⊥x轴,∴SKIPIF1<0是等腰直角三角形,∴SKIPIF1<0,∵SKIPIF1<0,即SKIPIF1<0,解得:SKIPIF1<0,∴C点的纵坐标为SKIPIF1<0,∵点SKIPIF1<0为线段SKIPIF1<0的中点,∴点SKIPIF1<0的纵坐标为SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题考查了坐标和图形的性质,动点线段最值问题,勾股定理等知识,确定AC为最大值时点C的位置是解题的关键.10.如图,正方形ABCD,边长为4,点P和点Q在正方形的边上运动,且PQ=4,若点P从点B出发沿B→C→D→A的路线向点A运动,到点A停止运动;点Q从点A出发,沿A→B→C→D的路线向点D运动,到达点D停止运动.它们同时出发,且运动速度相同,则在运动过程中PQ的中点O所经过的路径长为.【答案】SKIPIF1<0【详解】解:画出点O运动的轨迹,如图虚线部分,则点P从B到A的运动过程中,PQ的中点O所经过的路线长等于SKIPIF1<03π,故答案为:3π.11.如图,Rt△ABC中,∠ACB=90°,∠CAB=60°,AB=4,点P是BC边上的动点,过点c作直线记的垂线,垂足为Q,当点P从点C运动到点B时,点Q的运动路径长为.【答案】SKIPIF1<0【详解】解:∵AQ⊥CQ,∴∠AQC=90°,∴当点P从点C运动到点B时,点Q的运动的轨迹是以AC为直径的半圆上,路径是120度的弧长,在Rt△ABC中,∵AB=4,∠B=30°,∴ACSKIPIF1<0AB=2,∴点Q的运动路径长为SKIPIF1<0π12.如图,△ABC为等边三角形,AB=2,若P为△ABC内一动点,且满足∠PAB=∠ACP,则点P运动的路径长为.【答案】SKIPIF1<0【详解】解:∵△ABC是等边三角形,∴∠ABC=∠BAC=60°,AC=AB=2,∵∠PAB=∠ACP,∴∠PAC+∠ACP=60°,∴∠APC=120°,∴点P的运动轨迹是SKIPIF1<0,如图所示:连接OA、OC,作OD⊥AC于D,则AD=CDSKIPIF1<0AC=1,∵SKIPIF1<0所对的圆心角=2∠APC=240°,∴劣弧AC所对的圆心角∠AOC=360°﹣240°=120°,∵OA=OC,∴∠OAD=30°,∵OD⊥AC,∴ODSKIPIF1<0ADSKIPIF1<0,OA=2ODSKIPIF1<0,∴SKIPIF1<0的长为SKIPIF1<0π;故答案为:SKIPIF1<0π.13.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,D是BC上一动点,连接AD,过点C作CE⊥AD于E,过点E作EF⊥AB交BC于点F,则CF的最大值是.【答案】SKIPIF1<0【分析】如图,取AC的中点O,连接OE,OF,延长FE交AB于T.证明OE=SKIPIF1<0AC=1,推出点E的在以O为圆心,1为半径的圆上运动,推出当FT与⊙O相切时,CF的值最大.【详解】解:如图,取AC的中点O,连接OE,OF,延长FE交AB于T.∵∠ACB=90°,AB=4,∠B=30°,∴∠CAB=60°,AC=SKIPIF1<0AB=2,∵CE⊥AD,∴∠AEC=90°,∵AO=OC=1,∴OE=SKIPIF1<0AC=1,∴点E在以O为圆心,1为半径的圆上运动,∴当FT与⊙O相切时,CF的值最大,∵直线CF,直线EF都是⊙O的切线,∴FC=FE,∴∠FCE=∠FEC,∵∠CAE+∠ACE=90°,∠ACE+∠ECF=90°,∴∠CAE=∠FCE,∵∠CEF+∠AET=90°,∠AET+∠EAT=90°,∴∠FEC=∠EAT,∴∠CAE=∠EAT=30°,∵CF=FE,OC=OE,∴OF⊥EC,∵AD⊥CE,∵OF∥AD,∴∠COF=∠CAD=30°,∴CF=OC•tan30°=SKIPIF1<0,∴CF的最大值为SKIPIF1<0.故答案为:SKIPIF1<0.【点睛】本题主要考查直角三角形30°角的性质,直线与圆的位置关系,线段的垂直平分线的性质等知识,解决本题的关键是发现点E在以O为圆心,1为半径的圆上运动,推出当FT与⊙O相切时,CF的值最大.14.如图,SKIPIF1<0中,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0,SKIPIF1<0是SKIPIF1<0内部的一个动点,且满足SKIPIF1<0,则线段SKIPIF1<0长的最小值为.【答案】2:【分析】首先证明点P在以AB为直径的⊙O上,连接OC与⊙O交于点P,此时PC最小,利用勾股定理求出OC即可解决问题.【详解】∵∠PAB+∠PBA=90°∴∠APB=90°∴点P在以AB为直径的弧上(P在△ABC内)设以AB为直径的圆心为点O,如图接OC,交☉O于点P,此时的PC最短∵AB=6,∴OB=3∵BC=4∴SKIPIF1<0∴PC=5-3=2【点睛】此题考查了三角形与圆的综合题,重点是发现满足什么条件时PC有最小值.关于三点共线的最短距离是中考偏好考的考点之一,此类问题借助图形进行理解,发现点O的位置是关键.15.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将ΔEBF沿EF所在直线折叠得到ΔEB'F,连接B'D,则B'D的最小值是.【答案】SKIPIF1<0.【分析】如图所示,点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,B'D的值最小,根据勾股定理求出DE,根据折叠的性质可知B'E=BE=2,即可求出B'D.【详解】如图所示点B'在以E为圆心EA为半径的圆上运动,当D、B'、E共线时,B'D的值最小,根据折叠的性质,△EBF≌△EB'F,∴∠B=∠EB'F,EB'=EB.∵E是AB边的中点,AB=4,∴AE=EB'=2.∵AD=6,∴DESKIPIF1<02SKIPIF1<0,∴B'D=2SKIPIF1<02.故答案为2SKIPIF1<02.【点睛】本题考查了折叠的性质、全等三角形的判定与性质、两点之间线段最短的综合运用;确定点B'在何位置时,B'D的值最小是解决问题的关键.16.如图,在矩形ABCD中,AB=8,BC=5,P是矩形内部一动点,且满足∠PAB=∠PBC,则线段CP的最小值是.【答案】SKIPIF1<0﹣4.【分析】连接OC与圆O交于点P,先证明点P在以AB为直径的圆O上,再利用勾股定理求出OC即可.【详解】∵∠ABC=90°,∴∠ABP+∠PBC=90°,∵∠PAB=∠PBC,∴∠BAP+∠ABP=90°,∴∠APB=90°,∴OP=OA=OB(直角三角形斜边中线等于斜边一半),∴点P在以AB为直径的⊙O上,连接OC交⊙O于点P,此时PC最小,∵在矩形ABCD中,AB=8,BC=5,在RT△BCO中,∵∠OBC=90°,BC=5,OB=4,∴OC=SKIPIF1<0,∴PC=OC﹣OP=SKIPIF1<0﹣4.∴PC最小值为SKIPIF1<0﹣4.故答案为SKIPIF1<0﹣4.【点睛】本题考查了点与圆的的位置关系、圆周角定理及最短路径等知识,会求圆外一点到圆的最大距离和最小距离是解题的关键.二、解答题17.如图,在正方形SKIPIF1<0中,点E在直线SKIPIF1<0右侧,且SKIPIF1<0,以SKIPIF1<0为边作正方形SKIPIF1<0,射线SKIPIF1<0与边SKIPIF1<0交于点M,连接SKIPIF1<0、SKIPIF1<0.(1)如图1,求证:SKIPIF1<0;(2)若正方形SKIPIF1<0的边长为4,①如图2,当G、C、M三点共线时,设SKIPIF1<0与SKIPIF1<0交于点N,求SKIPIF1<0的值;②如图3,取SKIPIF1<0中点P,连接SKIPIF1<0,求SKIPIF1<0长度的最大值.【答案】(1)见解析(2)①SKIPIF1<0,②当P、B、F三点共线时,PF有最大值为SKIPIF1<0【分析】(1)对角线SKIPIF1<0是正方形SKIPIF1<0的对称轴,即可得SKIPIF1<0;(2)①当G、C、M三点共线时,根据SKIPIF1<0,SKIPIF1<0,SKIPIF1<0进而即可求得SKIPIF1<0的值;②连接SKIPIF1<0,证明SKIPIF1<0,求出相似比,求出SKIPIF1<0,当P、B、F三点共线时,即可求出最大值.【详解】(1)如图1,∵对角线SKIPIF1<0是正方形SKIPIF1<0的对称轴,∴SKIPIF1<0;(2)如图2,①当G、C、M三点共线时,∵SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,∴SKIPIF1<0,又∵SKIPIF1<0,SKIPIF1<0,∴SKIPIF1<0,②如图3,∵SKIPIF1<0,SKIPIF1<0,SKIPIF1<0∴SKIPIF1<0,∴SKIPIF1<0,∵SKIPIF1<0,∴SKIPIF1<0;在SKIPIF1<0中,SKIPIF1<0,当P、B、F三点共线时,PF有最大值:SKIPIF1<0.【点睛】本题考查了正方形的性质,相似三角形的性质,掌握相似三角形的性质与判定是解题的关键.18.已知,平面直角坐标系中有一个边长为6的正方形SKIPIF1<0,SKIPIF1<0为线段SKIPIF1<0上的动点,将SKIPIF1<0沿直线SKIPIF1<0对折,使SKIPIF1<0点落在SKIPIF1<0处.(1)如图①,当SKIPIF1<0时,求点SKIPIF1<0的坐标;(2)如图②,连接SKIPIF1<0,当SKIPIF1<0时.①求点SKIPIF1<0的坐标;②连接SKIPIF1<0,求SKIPIF1<0与SKIPIF1<0重叠部分的面积;(3)当点SKIPIF1<0在线段SKIPIF1<0(不包括端点)上运动时,请直接写出线段SKIPIF1<0的取值范围.【答案】(1)SKIPIF1<0(2)①SKIPIF1<0,②SKIPIF1<0(3)SKIPIF1<0【分析】(1)如图,连接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0由对折可得:SKIPIF1<0证明SKIPIF1<0是等边三角形,可得SKIPIF1<0再利用三角函数可得答案;(2)①利用平行线的性质证明SKIPIF1<0从而可得答案;②如图,连接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0过SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0过SKIPIF1<0于SKIPIF1<0再分别求解SKIPIF1<0的坐标,利用函数解析式与三角形的面积公式可得答案;(3)如图,由对折可得SKIPIF1<0则SKIPIF1<0在以SKIPIF1<0为圆心,SKIPIF1<0为半径的SKIPIF1<0上运动,与SKIPIF1<0不重合,连接AC,交SKIPIF1<0于SKIPIF1<0当SKIPIF1<0重合时,SKIPIF1<0取得最小值,从而可得答案.【详解】(1)解:如图,连接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0过SKIPIF1<0作SKIPIF1<0于SKIPIF1<0由对折可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0是等边三角形,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0(2)①SKIPIF1<0SKIPIF1<0而SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0②如图,连接SKIPIF1<0交SKIPIF1<0于SKIPIF1<0交SKIPIF1<0于SKIPIF1<0过SKIPIF1<0作SKIPIF1<0交SKIPIF1<0于SKIPIF1<0过SKIPIF1<0于SKIPIF1<0由①得:SKIPIF1<0设SKIPIF1<0则SKIPIF1<0SKIPIF1<0解得:SKIPIF1<0(不符合题意的根舍去)SKIPIF1<0SKIPIF1<0而SKIPIF1<0设SKIPIF1<0为SKIPIF1<0则SKIPIF1<0解得:SKIPIF1<0∴SKIPIF1<0为SKIPIF1<0同理可得:AM为SKIPIF1<0OB为SKIPIF1<0SKIPIF1<0解得:SKIPIF1<0即SKIPIF1<0所以SKIPIF1<0SKIPIF1<0即SKIPIF1<0同理可得:SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0与SKIPIF1<0重叠部分的面积为:SKIPIF1<0(3)如图,由对折可得SKIPIF1<0∴SKIPIF1<0在以SKIPIF1<0为圆心,SKIPIF1<0为半径的SKIPIF1<0上运动,与SKIPIF1<0不重合,连接AC,交SKIPIF1<0于SKIPIF1<0当SKIPIF1<0重合时,SKIPIF1<0取得最小值,此时SKIPIF1<0SKIPIF1<0所以SKIPIF1<0的取值范围为:SKIPIF1<0【点睛】本题考查的是正方形的性质,等边三角形的判定与性质,轴对称的性质,一次函数的几何应用,圆的基本性质,锐角三角函数的应用,熟练的利用一次函数的性质解决几何图形面积问题,利用圆的基本性质求解线段长度的最小值是解本题的关键.19.如图,抛物线SKIPIF1<0(a为常数,SKIPIF1<0)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,且OB=OC.(1)求a的值;(2)点D是该抛物线的顶点,点P(m,n)是第三象限内抛物线上的一个点,分别连接BD、BC、CD、BP,当∠PBA=∠CBD时,求m的值;(3)点K为坐标平面内一点,DK=2,点M为线段BK的中点,连接AM,当AM最大时,求点K的坐标.【答案】(1)SKIPIF1<0(2)SKIPIF1<0(3)SKIPIF1<0【分析】(1)先求得SKIPIF1<0,SKIPIF1<0点的坐标,进而根据SKIPIF1<0即可求得SKIPIF1<0的值;(2)过点SKIPIF1<0作SKIPIF1<0轴于点SKIPIF1<0,证明SKIPIF1<0是直角三角形,进而SKIPIF1<0,根据相似的性质列出比例式进而代入点SKIPIF1<0的坐标解方程即可;(3)接SKIPIF1<0,取SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0,根据题意,点SKIPIF1<0在以SKIPIF1<0为圆心,2为半径的圆上,则SKIPIF1<0在以SKIPIF1<0为圆心,SKIPIF1<0为半径的圆上运动,根据点与圆的距离求最值,进而求得SKIPIF1<0的解析式为SKIPIF1<0,根据SKIPIF1<0,设直线SKIPIF1<0的解析式为SKIPIF1<0,将点SKIPIF1<0代入求得SKIPIF1<0,进而设SKIPIF1<0,根据SKIPIF1<0,进而根据勾股定理列出方程解方程求解即可.【详解】(1)SKIPIF1<0SKIPIF1<0SKIPIF1<0令SKIPIF1<0,解得SKIPIF1<0令SKIPIF1<0,SKIPIF1<0SKIPIF1<0抛物线SKIPIF1<0(a为常数,SKIPIF1<0)与x轴分别交于A,B两点(点A在点B的左侧),与y轴交于点C,SKIPIF1<0抛物线与SKIPIF1<0轴的交点为SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0解得SKIPIF1<0(2)如图,过点SKIPIF1<0作SKIPIF1<0轴于点SKIPIF1<0,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0是直角三角形,且SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0又SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0在抛物线SKIPIF1<0上,SKIPIF1<0SKIPIF1<0SKIPIF1<0SKIPIF1<0整理得SKIPIF1<0解得SKIPIF1<0(舍)SKIPIF1<0在第三象限,SKIPIF1<0SKIPIF1<0(3)如图,连接SKIPIF1<0,取SKIPIF1<0的中点SKIPIF1<0,连接SKIPIF1<0,SKIPIF1<0是SKIPIF1<0的中位线SKIPIF1<0根据题意点SKIPIF1<0在以SKIPIF1<0为圆心,2为半径的圆上,则SKIPIF1<0在以SKIPIF1<0为圆心,SKIPIF1<0为半径的圆上运动,当SKIPIF1<0三点共线,且SKIPIF1<0在SKIPIF1<0的延长线上时,SKIPIF1<0最大,如图,SKIPIF1<0SKIPIF1<0即SKIPIF1<0SKIPIF1<0设直线SKIPIF1<0的解析式为SKIPIF1<0,代入点SKIPIF1<0,即SKIPIF1<0解得SKIPIF1<0SKIPIF1<0直线SKIPIF1<0的解析式为SKIPIF1<0SKIPIF1<0设直线SKIPIF1<0的解析式为SKIPIF1<0SKIPIF1<0SKIPIF1<0解得SKIPIF1<0则SKIPIF1<0的解析式为SKIPIF1<0设点SKIPIF1<0
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024专项新房买卖法律合同书版B版
- 2024年床垫行业购销协议标准模板一
- 2024年工程项目整体责任承包合同版B版
- 2024年WPS格式建筑项目施工承包协议版B版
- 2024年体育场馆升级改造工程施工协议版
- 2024年品牌形象重塑合同
- 2024年固定岗位劳动协议样本
- 2024年子女抚养经济支持合同承诺稿版B版
- 2024年中小企业法律支持服务协议典范版B版
- 2024年婚庆场地租赁合同范本在线
- 连铸大包回转台安全操作规程
- 【医疗题材纪录片兴起与其传播价值6900字】
- 轮胎修理环保措施
- 色环电阻识别方法
- 轴平键强度计算表
- 20xx年普外科人才培养计划
- 微信公众号转让协议
- 2-3 中国的耕地资源与粮食安全 教案 高中地理新人教版选择性必修3(2022~2023学年)
- 溺水的现场救护课件
- 现代汉语语法试题
- 心血管C0605操作流程
评论
0/150
提交评论