版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
高中数学教案第十章排列组合和概率(第1课时)王新敞新疆奎屯市第一高级中学第1页(共1页)排列组合公式/排列组合计算公式公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数
R参与选择的元素个数
!-阶乘,如
9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);
因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:
有从1到9共计9个号码球,请问,可以组成多少个三位数?A1:
123和213是两个不同的排列数。即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2:
有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2:
213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?
解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.
(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评
由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.
例2排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解
依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴符合题意的不同排法共有9种.点评
按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5化简.解法一原式解法二原式点评
解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵,,∴原方程可化为.即,解得第六章
排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构
三、知识点、能力点提示(一)加法原理乘法原理说明
加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1
5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解:
5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明
排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2
由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50000的偶数共有(
)A.60个
B.48个
C.36个
D.24个解
因为要求是偶数,个位数只能是2或4的排法有P12;小于50000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3
将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:
将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即2143,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明
历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4
从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有(
)A.140种
B.84种
C.70种
D.35种解:
抽出的3台电视机中甲型1台乙型2台的取法有C14·C25种;甲型2台乙型1台的取法有C24·C15种根据加法原理可得总的取法有C24·C25+C24·C15=40+30=70(种)可知此题应选C.例5
甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1项,丙、丁公司各承包2项,问共有多少种承包方式?解:
甲公司从8项工程中选出3项工程的方式C38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C15种;丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C24种;丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C22种.根据乘法原理可得承包方式的种数有C38×C15×C24×C22=×1=1680(种).(四)二项式定理、二项展开式的性质说明
二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题.例6
在(x-)10的展开式中,x6的系数是(
)A.-27C610
B.27C410
C.-9C610
D.9C410解
设(x-)10的展开式中第γ+1项含x6,因Tγ+1=Cγ10x10-γ(-)γ,10-γ=6,γ=4于是展开式中第5项含x6,第5项系数是C410(-)4=9C410故此题应选D.例7
(x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于
解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-20.(五)综合例题赏析例8
若(2x+)4=a0+a1x+a2x2+a3x3+a4x4,则(a0+a2+a4)2-(a1+a3)2的值为(
)A.1
B.-1
C.0
D.2解:A.例9
2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2名护士,不同的分配方法共有(
)A.6种
B.12种
C.18种
D.24种解
分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。应选B.例10
从4台甲型和5台乙型电视机中任意取出3台,其中至少要有甲型与乙型电视机各1台,则不同取法共有(
).A.140种
B.84种
C.70种
D.35种解:取出的3台电视机中,甲型电视机分为恰有一台和恰有二台两种情形.∵C24·+C25·C14=5×6+10×4=70.∴应选C.例11
某小组共有10名学生,其中女生3名,现选举2名代表,至少有1名女生当选的不同选法有(
)A.27种
B.48种
C.21种
D.24种解:分恰有1名女生和恰有2名女生代表两类:∵C13·C17+C23=3×7+3=24,∴应选D.例12
由数学0,1,2,3,4,5组成没有重复数字的六位数,其中个位数字小于十位数字的共有(
).A.210个
B.300个C.464个
D.600个解:先考虑可组成无限制条件的六位数有多少个?应有P15·P55=600个.由对称性,个位数小于十位数的六位数和个位数大于十位数的六位数各占一半.∴有×600=300个符合题设的六位数.应选B.例13
以一个正方体的顶点为顶点的四面体共有(
).A.70个
B.64个C.58个
D.52个解:如图,正方体有8个顶点,任取4个的组合数为C48=70个.其中共面四点分3类:构成侧面的有6组;构成垂直底面的对角面的有2组;形如(ADB1C1)的有4组.∴能形成四面体的有70-6-2-4=58(组)应选C.例14
如果把两条异面直线看成“一对”,那么六棱锥的棱所在的12条直线中,异面直线共有(
).A.12对
B.24对C.36对
D.48对解:设正六棱锥为O—ABCDEF.任取一侧棱OA(C16)则OA与BC、CD、DE、EF均形成异面直线对.∴共有C16×4=24对异面直线.应选B.例15
正六边形的中心和顶点共7个点,以其中三个点为顶点的三角形共
个(以数字作答).解:7点中任取3个则有C37=35组.其中三点共线的有3组(正六边形有3条直径).∴三角形个数为35-3=32个.例16
设含有10个元素的集合的全部子集数为S,其中由3个元素组成的子集数为T,则的值为
。解
10个元素的集合的全部子集数有:S=C010+C110+C210+C310+C410+C510+C610+C710+C810+C910+C1010=210=1024其中,含3个元素的子集数有T=C310=120故=例17
例17
在50件产品n中有4件是次品,从中任意抽了5件,至少有3件是次品的抽法共
种(用数字作答).解:“至少3件次品”即“有3件次品”或“有4件次品”.∴C34·C246+C44·C146=4186(种)例18
有甲、乙、丙三项任务,甲需2人承担,乙、丙各需1人承担,从10人中选派4人承担这三项任务,不同的选法共有(
).A.1260种
B.2025种C.2520种
D.5040种解:先从10人中选2个承担任务甲(C210)再从剩余8人中选1人承担任务乙(C18)又从剩余7人中选1人承担任务乙(C17)∴有C210·C18C17=2520(种).应选C.例19
集合{1,2,3}子集总共有(
).A.7个
B.8个
C.6个
D.5个解
三个元素的集合的子集中,不含任何元素的子集有一个,由一个元素组成的子集数C13,由二个元素组成的子集数C23。由3个元素组成的子集数C33。由加法原理可得集合子集的总个数是C13+C23+C33+1=3+3+1+1=8故此题应选B.例20
假设在200件产品中有3件是次品,现在从中任意抽取5件,其中至少有两件次品的抽法有(
).A.C23C3197种
B.C23C3197+C33C2197C.C5200-C5197
D.C5200-C13C4197解:5件中恰有二件为次品的抽法为C23C3197,5件中恰三件为次品的抽法为C33C2197,∴至少有两件次品的抽法为C23C3197+C33C2197.应选B.例21
两排座位,第一排有3个座位,第二排有5个座位,若8名学生入座(每人一个座位),则不同座法的总数是(
).A.C58C38
B.P12C58C38C.P58P38
课题:
10.1加法原理和乘法原理(一)教学目的:1了解学习本章的意义,激发学生的兴趣.2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力.3.会利用两个原理分析和解决一些简单的应用问题.教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理)教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解授课类型:新授课课时安排:1课时教具:多媒体、实物投影仪内容分析:两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样合理地进行分类和分步教学中给出的练习均在课本例题的基础上稍加改动过的,目的就在于帮助学生对这一知识的理解与应用两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想.更具体地说就是把事物分成类或分成步去数.“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处教学过程:一、复习引入:一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少?某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法?揭示本节课内容:等我们学了这一部分内容后,这些问题会很容易解决而这部分内容是代数中一个独立的问题,与旧知识联系很少,但它是以后学习二项式定理、概率学、统计学等知识的基础内容从本节课开始,我们将要学习中学代数内容中一个独特的部分——排列、组合它们研究对象独特,研究问题的方法不同一般虽然份量不多,但是与旧知识的联系很少,而且它还是我们今后学习概率论的基础,统计学、运筹学以及生物的选种等都与它直接有关至于在日常的工作、生活上,只要涉及安排调配的问题,就离不开它今天我们就来学习本章的两个基本原理(这是排列、组合的第一节课,把这一章的内容作一个大概的介绍,能使学生从一开始就对将要学习的知识有一个初步的了解,并为本章的学习研究打下思想基础)二、讲解新课:1.问题一(1-1)从甲地到乙地,可以乘火车,也可以乘汽车,一天中火车有3班,汽车有2班,那么一天中,乘坐这些交通工具从甲地到乙地共有多少种方法?分析:因为一天中乘火车有3种走法,乘汽车有2种走法,每一种走法都可以从甲地到乙地,所以,共有3+2=5种不同的走法,如图所示(1-2)从甲地到乙地,可以乘火车,也可以乘汽车,还可以乘轮船一天中,火车有4班,汽车有2班,轮船有3班那么一天中乘坐这些交通工具从甲地到乙地共有多少种不同的走法?分析:从甲地到乙地有3类方法:第一类方法,乘火车,有4种方法;第二类方法,乘汽车,有2种方法;第三类方法,乘轮船,有3种方法;所以,从甲地到乙地共有4+2+3=9种方法2 分类计数原理(加法原理):做一件事情,完成它可以有n类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法,……,在第n类办法中有种不同的方法那么完成这件事共有种不同的方法3.问题二(2-1)从甲地到乙地,要从甲地先乘火车到丙地,再于次日从丙地乘汽车到乙地,一天中,火车有3班,汽车有2班,那么两天中,从甲地到乙地共有多少种不同的走法?分析:因为乘火车有3种走法,乘汽车有2种走法,所以,乘一次火车再接着乘一次汽车从甲地到乙地,共有种不同走法,如图所示,所有走法:火车1──汽车1;火车1──汽车2;火车2──汽车1;火车2──汽车2;火车3──汽车1;火车3──汽车2(2-2)如图,由A村去B村的道路有2条,由B村去C村的道路有3条从A村经B村去C村,共有多少种不同的走法?分析:从A村经B村去C村有2步,第一步,由A村去B村有2种方法,第二步,由B村去C村有3种方法,所以从A村经B村去C村共有2×3=6种不同的方法4.分步计数原理(乘法原理):做一件事情,完成它需要分成n个步骤,做第一步有种不同的方法,做第二步有种不同的方法,……,做第n步有种不同的方法,那么完成这件事有种不同的方法5.原理浅释分类计数原理(加法原理)中,“完成一件事,有n类办法”,是说每种办法“互斥”,即每种方法都可以独立地完成这件事,同时他们之间没有重复也没有遗漏.进行分类时,要求各类办法彼此之间是相互排斥的,不论那一类办法中的哪一种方法,都能独立完成这件事.只有满足这个条件,才能直接用加法原理,否则不可以.分步计数原理(乘法原理)中,“完成一件事,需要分成n个步骤”,是说每个步骤都不足以完成这件事,这些步骤,彼此间也不能有重复和遗漏.如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要依次完成所有步骤才能完成这件事,而各步要求相互独立,即相对于前一步的每一种方法,下一步都有m种不同的方法,那么完成这件事的方法数就可以直接用乘法原理.可以看出“分”是它们共同的特征,但是,分法却大不相同.两个原理的公式是:,这种变形还提醒人们,分类和分步,常是在一定的限制之下人为的,因此,在这里我们大有用武之地:可以根据解题需要灵活而巧妙地分类或分步.强调知识的综合是近年的一种可取的现象.两个原理,可以与物理中电路的串联、并联类比.两个基本原理的作用:计算做一件事完成它的所有不同的方法种数两个基本原理的区别:一个与分类有关,一个与分步有关;加法原理是“分类完成”,乘法原理是“分步完成”三、讲解范例:例1.书架的第1层放有4本不同的计算机书,第2层放有3本不同的文艺书,第3层放有2本不同的体育书,(1)从书架上任取1本书,有多少种不同的取法?(2)从书架的第1、2、3层各取1本书,有多少种不同的取法?解:(1)从书架上任取1本书,有3类办法:第1类办法是从第1层取1本计算机书,有4种方法;第2类是从第2层取1本文艺书,有3种方法;第3类办法是从第3层取1本体育书,有2种方法根据分类计数原理,不同取法的种数是4+3+2=9种所以,从书架上任取1本书,有9种不同的取法;(2)从书架的第1、2、3层各取1本书,可以分成3个步骤完成:第1步从第1层取1本计算机书,有4种方法;第2步从第2层取1本艺术书,有3种方法;第3步从第3层取1本体育书,有2种方法根据分步计数原理,从书架的第1、2、3层各取1本书,不同取法的种数是种所以,从书架的第1、2、3层各取1本书,有24种不同的取法例2.一种号码拨号锁有4个拨号盘,每个拨号盘上有从0到9共10个数字,这4个拨号盘可以组成多少个四位数号码?解:每个拨号盘上的数字有10种取法,根据分步计数原理,4个拨号盘上各取1个数字组成的四位数字号码的个数是,所以,可以组成10000个四位数号码例3.要从甲、乙、丙3名工人中选出2名分别上日班和晚班,有多少种不同的选法?解:从3名工人中选1名上日班和1名上晚班,可以看成是经过先选1名上日班,再选1名上晚班两个步骤完成,先选1名上日班,共有3种选法;上日班的工人选定后,上晚班的工人有2种选法根据分步技数原理,不同的选法数是种,6种选法可以表示如下:日班晚班甲乙甲丙乙甲乙丙丙甲丙乙所以,从3名工人中选出2名分别上日班和晚班,6种不同的选法例4.甲厂生产的收音机外壳形状有3种,颜色有4种,乙厂生产的收音机外壳形状有4种,颜色有5种,这两厂生产的收音机仅从外壳的形状和颜色看,共有所少种不同的品种?解:收音机的品种可分两类:第一类:甲厂收音机的种类,分两步:形状有3种,颜色有4种,共种;第二类:乙厂收音机的种类,分两步:形状有4种,颜色有5种,共种所以,共有个品种说明:分类和分步计数原理,都是关于做一件事的不同方法的种数的问题区别在于:分类计数原理针对“分类”问题,其中方法相互独立,用其中任何一种方法都可以做完这件事;分步计数原理针对“分步”问题,各个步骤中方法相互独立,只有各个步骤都完成才算完成了这件事四、课堂练习:1.书架上层放有6本不同的数学书,下层放有5本不同的语文书(1)从中任取一本,有多少种不同的取法?(2)从中任取数学书与语文书各一本,有多少种不同的取法?解:(1)从书架上任取一本书,有两种方法:第一类可从6本数学书中任取一本,有6种方法;第二类可从5本语文书中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《条件状语从句》课件
- 口腔颌面部后天性组织缺损与畸形的临床护理
- 白居易《轻肥》(课件)
- 【MOOC】科学视野中的经典文学作品选读-电子科技大学 中国大学慕课MOOC答案
- 【MOOC】光纤通信技术-华中科技大学 中国大学慕课MOOC答案
- 重复肾盂输尿管畸形的临床护理
- 饭店炉灶清理方案
- 飞锤支架工艺课程设计
- 飞机装配 课程设计
- 飞思卡尔单片机课程设计
- 小学生学业成绩等级制度-小学学业等级
- 过程审核VDA6.3检查表
- 常压矩形容器设计计算软件
- 交流变换为直流的稳定电源设计方案
- PR6C系列数控液压板料折弯机 使用说明书
- 装配工艺通用要求
- 钢结构工程环境保护和文明施工措施
- 物业管理业主意见征询表
- 8D培训课件 (ppt 43页)
- 劳动力计划表
- 《教育改革发展纲要》义务教育阶段解读
评论
0/150
提交评论