湖南省娄底市娄底一中学2024届八年级数学第二学期期末综合测试试题含解析_第1页
湖南省娄底市娄底一中学2024届八年级数学第二学期期末综合测试试题含解析_第2页
湖南省娄底市娄底一中学2024届八年级数学第二学期期末综合测试试题含解析_第3页
湖南省娄底市娄底一中学2024届八年级数学第二学期期末综合测试试题含解析_第4页
湖南省娄底市娄底一中学2024届八年级数学第二学期期末综合测试试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省娄底市娄底一中学2024届八年级数学第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果下面有三个推断:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.1.其中合理的是()A.① B.② C.①② D.①③2.不等式2x-1≤3的解集是()A.x≤1 B.x≤2 C.x≥1 D.x≤-23.一个长为2、宽为1的长方形以下面的四种“姿态”从直线l的左侧水平平移至右侧(下图中的虚线都是水平线).其中,所需平移的距离最短的是()A. B.C. D.4.已知一个直角三角形的两边长分别为3和4,则第三边长为()A.5 B.7 C. D.或55.函数的自变量x的取值范围是()A. B. C. D.6.已知直线l经过点A(4,0),B(0,3).则直线l的函数表达式为()A.y=﹣x+3 B.y=3x+4 C.y=4x+3 D.y=﹣3x+37.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有()A.金额 B.数量 C.单价 D.金额和数量8.如图,△ABC以点C为旋转中心,旋转后得到△EDC,已知AB=1.5,BC=4,AC=5,则DE=()A.1.5 B.3 C.4 D.59.一次函数y=-3x+m的图象经过点P-2,3,且与x轴,y轴分别交于点A、B,则△AOBA.12 B.1 C.3210.在下列各式中①;②;③;④,是一元二次方程的共有()A.0个 B.1个 C.2个 D.3个二、填空题(每小题3分,共24分)11.计算:=.12.已知,则的值等于__________.13.如图,正方形CDEF内接于,,,则正方形的面积是________.14.在平面直角坐标系中,抛物线y=a(x−2)经过原点O,与x轴的另一个交点为A.将抛物线在x轴下方的部分沿x轴折叠到x轴上方,将这部分图象与原抛物线剩余部分的图象组成的新图象记为G,过点B(0,1)作直线l平行于x轴,当图象G在直线l上方的部分对应的函数y随x增大而增大时,x的取值范围是____.15.若正比例函数的图象过点和点,当时,,则的取值范围为__________.16.若数据,,…,的方差为6,则数据,,…,的方差是______.17.169的算术平方根是______.18.计算:______.三、解答题(共66分)19.(10分)小颖用四块完全一样的长方形方砖,恰好拼成如图1所示图案,如图1,连接对角线后,她发现该图案中可以用“面积法”采用不同方案去证明勾股定理.设AE=a,DE=b,AD=c,请你找到其中一种方案证明:a1+b1=c1.20.(6分)长方形放置在如图所示的平面直角坐标系中,点轴,轴,.(1)分别写出点的坐标______;______;________.(2)在轴上是否存在点,使三角形的面积为长方形ABCD面积的?若存在,请直接写出点的坐标;若不存在,请说明理由.21.(6分)如图,在平行四边形ABCD中,AC,BD相交于点O,点E,F在AC上,且OE=OF.(1)求证:BE=DF;(2)当线段OE=_____时,四边形BEDF为矩形,并说明理由.22.(8分)如图,在四边形中,,,,,,点从点出发,以每秒单位的速度向点运动,点从点同时出发,以每秒单位的速度向点运动,其中一个动点到达终点时,另一个动点也随之停止运动,设运动时间为秒.(1)当时,若以点,和点,,,中的两个点为顶点的四边形为平行四边形,且线段为平行四边形的一边,求的值.(2)若以点,和点,,,中的两个点为顶点的四边形为菱形,且线段为菱形的一条对角线,请直接写出的值.23.(8分)已知一次函数的图象经过点A(0,﹣2),B(3,4),C(5,m).求:(1)这个一次函数的解析式;(2)m的值.24.(8分)如图,直线y=x﹣3交x轴于A,交y轴于B,(1)求A,B的坐标和AB的长(直接写出答案);(2)点C是y轴上一点,若AC=BC,求点C的坐标;(3)点D是x轴上一点,∠BAO=2∠DBO,求点D的坐标.25.(10分)学校开展“书香校园,诵读经典”活动,随机抽查了部分学生,对他们每天的课外阅读时长进行统计,并将结果分为四类:设每天阅读时长为t分钟,当0<t≤20时记为A类,当20<t≤40时记为B类,当40<t≤60时记为C类,当t>60时记为D类,收集的数据绘制成如下两幅不完整的统计图,请根据图中提供的信息,解答下列问题:(1)这次共抽取了名学生进行调查统计,扇形统计图中的D类所对应的扇形圆心角为°;(2)将条形统计图补充完整;(3)若该校共有2000名学生,请估计该校每天阅读时长超过40分钟的学生约有多少人?26.(10分)解方程:

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.【题目详解】解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.1,故错误.故选:B.【题目点拨】本题考查了利用频率估计概率,明确概率的定义是解题的关键.2、B【解题分析】

首先移项,把-1移到不等式的右边,注意要变号,然后合并同类项,再把x的系数化为1,即可求出不等式的解集.【题目详解】解:2x-1≤3,

移项得:2x≤3+1,

合并同类项得:2x≤4,

把x的系数化为1得:x≤2,

故选:B.【题目点拨】此题主要考查了一元一次不等式的解法,解不等式时要注意:①移项时要注意符号的改变;②把未知数的系数化为1时,两边同时除以或乘以同一个负数时要改变不等号的方向.3、C【解题分析】

根据平移的性质,利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离,然后比较它们的大小即可.【题目详解】A、平移的距离=1+2=3,B、平移的距离=2+1=3,C、平移的距离==,D、平移的距离=2,故选C.【题目点拨】本题考查了平移的性质:把一个图形整体沿某一直线方向移动,会得到一个新的图形,新图形与原图形的形状和大小完全相同;新图形中的每一点,都是由原图形中的某一点移动后得到的,这两个点是对应点.连接各组对应点的线段平行且相等.解决本题的关键是利用等腰直角三角形的性质和勾股定理计算出各个图形中平移的距离.4、D【解题分析】分两种情况:(1)边长为4的边为直角边,则第三边即为斜边,则第三边的长为;(2)边长为4的边为斜边,则第三边即为直角边,则第三边的长为,故选D.5、D【解题分析】

根据二次根式的意义,被开方数是非负数.【题目详解】根据题意得,解得.故选D.【题目点拨】本题考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负数.6、A【解题分析】

根据已知条件可直接写出函数表达式,清楚y=kx+b中k和b与x轴y轴交点之间的关系即可求解【题目详解】解:∵A(4,0),B(0,3),∴直线l的解析式为:y=﹣x+3;故选:A.【题目点拨】此题主要考查一次函数的解析式,掌握k和b与直线与x轴y轴交点之间的关系是解题关键7、D【解题分析】

根据常量与变量的定义即可判断.【题目详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【题目点拨】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.8、A【解题分析】

根据旋转的性质,得出△ABC≌△EDC,再根据全等三角形的对应边相等即可得出结论.【题目详解】由旋转可得,△ABC≌△EDC,∴DE=AB=1.5,故选A.【题目点拨】本题主要考查了旋转的性质的运用,解题时注意:旋转前、后的图形全等.9、C【解题分析】

由一次函数y=−3x+m的图象经过点P(−2,3),可求m得值,确定函数的关系式,进而可求出与x轴,y轴分别交于点A、B的坐标,从而知道OA、OB的长,可求出△AOB的面积.【题目详解】解:将点P(−2,3)代入一次函数y=−3x+m得:3=6+m,∴m=−3∴一次函数关系式为y=−3x−3,当x=0时,y=−3;当y=0是,x=−1;∴OA=1,OB=3,∴S△AOB=12×1×3=3故选:C.【题目点拨】考查一次函数图象上点的坐标特征,以及一次函数的图象与x轴、y轴交点坐标求法,正确将坐标与线段的长的相互转化是解决问题的前提和基础.10、B【解题分析】

根据一元二次方程的定义即可求解.【题目详解】由一元二次方程的定义可知①为一元二次方程,符合题意②不是方程,不符合题意③是分式方程,不符合题意④当a=0时,不是一元二次方程,不符合题意故选B.【题目点拨】此题主要考查一元二次方程的识别,解题的关键是熟知一元二次方程的定义.二、填空题(每小题3分,共24分)11、3【解题分析】分析:.12、3【解题分析】

将已知的两式相乘即可得出答案.【题目详解】解:∵∴∴的值等于3.【题目点拨】本题主要考查了因式分解的解法:提公因式法.13、0.8【解题分析】

根据题意分析可得△ADE∽△EFB,进而可得2DE=BF,2AD=EF=DE,由勾股定理得,DE2+AD2=AE2,可解得DE,正方形的面积等于DE的平方问题得解.【题目详解】∵根据题意,易得△ADE∽△EFB,∴BE:AE=BF:DE=EF:AD=2:1,∴2DE=BF,2AD=EF=DE,由勾股定理得,DE+AD=AE,解得:DE=EF=,故正方形的面积是=,故答案为:0.8【题目点拨】本题考查相似三角形,熟练掌握相似三角形的判定及基本性质是解题关键.14、1<x<2或x>2+.【解题分析】

先写出沿x轴折叠后所得抛物线的解析式,根据图象计算可得对应取值范围.【题目详解】由题意可得抛物线:y=(x−2),对称轴是:直线x=2,由对称性得:A(4,0),沿x轴折叠后所得抛物线为:y=−(x−2);如图,由题意得:当y=1时,(x−2)=1,解得:x=2+,x=2−,∴C(2−,1),F(2+,1),当y=1时,−(x−2)=1,解得:x=3,x=1,∴D(1,1),E(3,1),由图象得:图象G在直线l上方的部分,当1<x<2或x>2+时,函数y随x增大而增大;故答案为1<x<2或x>2+.【题目点拨】此题考查二次函数的性质,二次函数图象与几何变换,抛物线与坐标轴的交点,解题关键在于结合函数图象进行解答.15、【解题分析】

根据点A和点B的坐标关系即可求出正比例函数的增减性,然后根据增减性与比例系数的关系列出不等式,即可求出m的取值范围.【题目详解】解:∵正比例函数的图象过点和点,且时,,∴该正比例函数y随x的增大而减小∴解得:故答案为:【题目点拨】此题考查的是正比例函数的增减性,掌握正比例函数的增减性与比例系数的关系是解决此题的关键.16、1.【解题分析】

根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加2,所以波动不会变,方差不变.【题目详解】原来的方差,现在的方差==1,方差不变.故答案为:1.【题目点拨】此题考查了方差,本题说明了当数据都加上一个数(或减去一个数)时,方差不变,即数据的波动情况不变.17、1【解题分析】

根据算术平方根的定义解答即可.【题目详解】解:==1.故答案为:1.【题目点拨】此题主要考查了算术平方根的定义:如果一个数的平方等于A,那么这个数就叫做A的平方根,其中非负的平方根叫做这个数的算术平方根.18、【解题分析】

根据三角形法则依次进行计算即可得解.【题目详解】如图,∵=,,∴.故答案为:.【题目点拨】本题考查了平面向量,主要利用了三角形法则求解,作出图形更形象直观并有助于对问题的理解.三、解答题(共66分)19、见解析【解题分析】

根据S正方形EFGH=4S△AED+S正方形ABCD,列式可得结论.【题目详解】解:∵AE=a,DE=b,AD=c,∴S正方形EFGH=EH1=(a+b)1,S正方形EFGH=4S△AED+S正方形ABCD=4×ab+c1,∴(a+b)1=1ab+c1,∴a1+b1=c1.【题目点拨】本题考查了用数形结合来证明勾股定理,证明勾股定理常用的方法是利用面积证明,本题锻炼了同学们数形结合的思想方法.20、(1);;(2)或.【解题分析】

(1)由点A坐标及AB、AD长可写出B、C、D的坐标;(2)设点P的坐标为(a,0),表示出三角形的面积和长方形ABCD面积,由两者间的数量关系可得a的值.【题目详解】解:(1)由长方形ABCD可知,B点可看做A点向右平移AB长个单位得到,故B点坐标为,C点可看做A点向下平移AD长个单位得到,故C点坐标为,D点可看做C点向左平移CD长个单位得到,故D点坐标为.(2)设点P的坐标为,则点P到直线AD的距离为,所以由题意得,解得或6所以点P的坐标为或.【题目点拨】本题考查了平面直角坐标系,长方形中由已知点写其余点坐标时,可将其余点看做由已知点平移得到,正确根据点的坐标表示出图形的面积是解题的关键.21、(1)见解析;(2)OD.【解题分析】

(1)运用平行四边形性质,对角线相互平分,即可确定BO=OD,然后运用线段的和差即可求得BE=DF.(2)根据矩形对角线相等且相互平分,可确定OE=OD【题目详解】(1)证明:分别连接DE、BF∵四边形ABCD是平行四边形∴OB=OD又∵OE=OF∴四边形DEBF是平行四边形∴BE=DF(2)当OE=OD时,四边形BEDF是矩形∵OE=OF,OB=OD∴四边形BEDF是平行四边形又∵OE=OD,EF=2OE,BD=20D∴EF=BD∴四边形BEDF是矩形【题目点拨】本题主要考查了平行四边形额性质和矩形的判定,有一定难度,需要认真审题和分析.22、(1)当t=或4时,线段为平行四边形的一边;(2)v的值是2或1【解题分析】

(1)由线段为平行四边形的一边分两种情况,利用平行四边形的性质对边相等建立方程求解即可得到结论;(2)由线段为菱形的一条对角线,用菱形的性质建立方程求解即可求出速度.【题目详解】(1)由线段为平行四边形的一边,分两种情况:①当P、Q两点与A、B两点构成的四边形是平行四边形时,∵AP∥BQ,∴当AP=BQ时,四边形APQB是平行四边形,此时t=22-3t,解得t=;②当P、Q两点与C、D两点构成的四边形是平行四边形时,∵PD∥QC,∴当PD=QC时,四边形PQCD是平行四边形,此时16-t=3t,解得t=4;综上,当t=或4时,线段为平行四边形的一边;(2)在Rt△ABP中,,AP=t∴,当PD=BQ=BP时,四边形PBQD是菱形,∴,解得∴当t=6,点Q的速度是每秒2个单位时四边形PBQD是菱形;在Rt△ABQ中,,BQ=22-vt,∴,当AP=AQ=CQ时,四边形AQPC是菱形,∴,解得,∴当t=,点Q的速度是每秒1个单位时四边形AQPC是菱形,综上,v的值是2或1.【题目点拨】此题考查图形与动点问题,平行四边形的性质,菱形的性质,勾股定理,正确理解图形的形状及性质是解题的关键.23、(1)y=1x﹣1;(1)2.【解题分析】

(1)利用待定系数法把点A(0,-1),B(3,4)代入y=kx+b,可得关于k、b的方程组,再解出方程组可得k、b的值,进而得到函数解析式;(1)把C(5,m)代入y=1x-1,即可求得m的值【题目详解】解:∵一次函数y=kx+b的图象经过点A(0,﹣1),B(3,4),∴,解得:∴这个一次函数的表达式为y=1x﹣1.(1)把C(5,m)代入y=1x﹣1,得m=1×5﹣1=2.【题目点拨】此题主要考查了待定系数法求一次函数解析式和一次函数图象上点点坐标特征,熟练掌握待定系数法求一次函数步骤是解题的关键.24、(1)点A为(4,0),点B为(0,-3),AB=5;(2)(0,);(3)点D坐标为(-1,0)或(1,0).【解题分析】

(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论