2024届河北省永清县八年级数学第二学期期末联考试题含解析_第1页
2024届河北省永清县八年级数学第二学期期末联考试题含解析_第2页
2024届河北省永清县八年级数学第二学期期末联考试题含解析_第3页
2024届河北省永清县八年级数学第二学期期末联考试题含解析_第4页
2024届河北省永清县八年级数学第二学期期末联考试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届河北省永清县八年级数学第二学期期末联考试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.对于一组数据:85,95,85,80,80,85,下列说法不正确的是()A.平均数为85 B.众数为85 C.中位数为82.5 D.方差为252.如图,在中,D是BC边的中点,AE是的角平分线,于点E,连接DE,若,,则AC的长度是()A.5 B.4 C.3 D.23.“学习强国”的英语“Learningpower”中,字母“n”出现的频率是()A.1 B. C. D.24.下列命题中,真命题是()A.两条对角线垂直的四边形是菱形B.对角线垂直且相等的四边形是正方形C.两条对角线相等的四边形是矩形D.两条对角线相等的平行四边形是矩形5.如图,以正方形ABCD的边AB为一边向外作等边△ABE,则∠BED的度数为()A.55° B.45° C.40° D.42.5°6.下列命题的逆命题正确的是()A.如果两个角都是45°,那么它们相等 B.全等三角形的周长相等C.同位角相等,两直线平行 D.若a=b,则7.如图,在正方形中,相交于点,分别为上的两点,,,分别交于两点,连,下列结论:①;②;③;④,其中正确的是()A.①② B.①④ C.①②④ D.①②③④8.如图,在矩形ABCD中,AD=10,AB=6,E为BC上一点,DE平分∠AEC,则CE的长为()A.1 B.2C.3 D.49.如图,∠ABC=∠ADC=Rt∠,E是AC的中点,则()A.∠1>∠2B.∠1=∠2C.∠1<∠2D.∠1与∠2大小关系不能确定10.已知□ABCD,根据图中尺规作图的痕迹,判断下列结论中不一定成立的是()A.∠DAE=∠BAE B.∠DEA=∠DAB C.DE=BE D.BC=DE二、填空题(每小题3分,共24分)11.已知,则代数式________.12.如图,小芳和爸爸正在散步,爸爸身高1.8m,他在地面上的影长为2.1m.若小芳比他爸爸矮0.3m,则她的影长为________m.13.二次函数的函数值自变量之间的部分对应值如下表:…014……4…此函数图象的对称轴为_____14.如图,已知Rt△ABC中,两条直角边AB=3,BC=4,将Rt△ABC绕直角顶点B旋转一定的角度得到Rt△DBE,并且点A落在DE边上,则△BEC的面积=__________________15.如图,中,,,,点是边上一定点,且,点是线段上一动点,连接,以为斜边在的右侧作等腰直角.当点从点出发运动至点停止时,点的运动的路径长为_________.16.某一时刻,身高1.6m的小明在阳光下的影长是0.4m,同一时刻同一地点测得旗杆的影长是5m,则该旗杆的高度是_________m.17.函数中,自变量________的取值范围是________.18.一个n边形的内角和是720°,则n=_____.三、解答题(共66分)19.(10分)如图1,在平面直角坐标系中,直线AB与x轴,y轴分别交于点A(2,0),B(0,4).(1)求直线AB的解析式;(2)若点M为直线y=mx在第一象限上一点,且△ABM是等腰直角三角形,求m的值.(3)如图3,过点A(2,0)的直线交y轴负半轴于点P,N点的横坐标为-1,过N点的直线交AP于点M.求的值.20.(6分)如图,△ABC中,∠A=60°,∠C=40°,DE垂直平分BC,连接BD.(1)尺规作图:过点D作AB的垂线,垂足为F.(保留作图痕迹,不写作法)(2)求证:点D到BA,BC的距离相等.21.(6分)已知深港两地的高铁站深圳北、九龙西两站相距约40km.现高铁与地铁冋时从深圳北出发驶向九龙西,高铁的平均速度比地铁快70km/h,当高铁到达九龙西站时,地铁恰好到达距离深圳北站12km处的福田站,求高铁的平均速度.(不考虑换乘时间).22.(8分)某学校打算招聘英语教师。对应聘者进行了听、说、读、写的英语水平测试,其中甲、乙两名应聘者的成绩(百分制)如下表所示。(1)如果学校想招聘说、读能力较强的英语教师,听、说、读、写成绩按照2:4:3:1的比确定,若在甲、乙两人中录取一人,请计算这两名应聘者的平均成绩(百分制)。从他们的成绩看,应该录取谁?(2)学校按照(1)中的成绩计算方法,将所有应聘者的最后成绩绘制成如图所示的频数分布直方图(每组分数段均包含左端数值,不包含右端数值,如最后左边一组分数为:)。①参加该校本次招聘英语教师的应聘者共有______________人(直接写出答案即可)。②学校决定由高分到低分录用3名教师,请判断甲、乙两人能否被录用?并说明理由。23.(8分)如图,城气象台测得台风中心在城正西方向的处,以每小时的速度向南偏东的方向移动,距台风中心的范围内是受台风影响的区域.(1)求城与台风中心之间的最小距离;(2)求城受台风影响的时间有多长?24.(8分)为了让广大青少年学生走向操场、走进自然、走到阳光下,积极参加体育锻炼,我国启动了“全国亿万学生阳光体育运动”短跑运动可以锻炼人的灵活性,增强人的爆发力,因此小明和小亮在课外活动中,报名参加了短跑训练小组.在近几次百米训练中,所测成绩如图所示,请根据图中所示解答以下问题.(1)请根据图中信息,补齐下面的表格;(2)从图中看,小明与小亮哪次的成绩最好?(3)分别计算他们的平均数和方差,若你是他们的教练,将小明与小亮的成绩比较后,你将分别给予他们怎样的建议?25.(10分)己知一次函数的图象过点,与y轴交于点B.求点B的坐标和k的值.26.(10分)先化简,再求值:+(x﹣2)2﹣6,其中,x=+1.

参考答案一、选择题(每小题3分,共30分)1、C【解题分析】

对数据的平均数,众数,中位数及方差依次判断即可【题目详解】平均数=(85+95+85+80+80+85)÷6=85,故A正确;有3个85,出现最多,故众数为85,故B正确;从小到大排列,中间是85和85,故中位数为85,故C错误;方差=[(85-85)2+(95-85)2+(85-85)2+(80-85)2+(80-85)2+(85-85)2]÷6=25,故D正确故选C【题目点拨】熟练掌握统计学中的平均数,众数,中位数与极差的定义是解决本题的关键2、A【解题分析】

延长CE,交AB于点F,通过ASA证明△EAF≌△EAC,根据全等三角形的性质得到AF=AC,EF=EC,根据三角形中位线定理得出BF=1,即可得出结果.【题目详解】解:延长CE,交AB于点F.

∵AE平分∠BAC,AE⊥CE,

∴∠EAF=∠EAC,∠AEF=∠AEC,

在△EAF与△EAC中,∴△EAF≌△EAC(ASA),∴AF=AC,EF=EC,又∵D是BC中点,∴BD=CD,∴DE是△BCF的中位线,∴BF=1DE=1.∴AC=AF=AB-BF=7-1=5;故选A.【题目点拨】此题考查的是三角形中位线定理、全等三角形的判定与性质等知识;熟练掌握三角形中位线定理,证明三角形全等是解题的关键.3、C【解题分析】

直接利用频率的定义分析得出答案.【题目详解】∵“学习强国”的英语“Learningpower”中,一共有13个字母,n有2个,

∴字母“n”出现的频率是:故选:C.【题目点拨】此题主要考查了频率的求法,正确把握定义是解题关键.4、D【解题分析】A、两条对角线垂直并且相互平分的四边形是菱形,故选项A错误;B、对角线垂直且相等的平行四边形是正方形,故选项B错误;C、两条对角线相等的平行四边形是矩形,故选项C错误;D、根据矩形的判定定理,两条对角线相等的平行四边形是矩形,为真命题,故选项D正确;故选D.5、B【解题分析】

根据等边三角形,可证△AED为等腰三角形,从而可求∠AED,也就可得∠BED的度数.【题目详解】解:∵等边△ABE∴∠EAB=∠BED=60°,AE=AD∵四边形ABCD是正方形∴∠BAD=90°,AB=AD∴∠EAD=150°,AE=AD∴∠AED=∠ADE=15°∴∠BED=60°-15°=45°故选:B.【题目点拨】此题主要考查了等边三角形的性质.即每个角为60度.6、C【解题分析】

交换原命题的题设与结论得到四个命题的逆命题,然后分别根据三角形的概念、全等三角形的判定、平行线的性质和平方根的定义判定四个逆命题的真假.【题目详解】A.

逆命题为:如果两个角相等,那么它们都是45°,此逆命题为假命题;

B.

逆命题为:周长相等的两三角形全等,此逆命题为假命题;

C.

逆命题为:两直线平行,同位角相等,此逆命题为真命题;

D.

逆命题为:若a2=b2,则a=b,此逆命题为假命题.

故选C.【题目点拨】本题考查命题与定理,解题的关键是掌握三角形的概念、全等三角形的判定、平行线的性质和平方根的定义.7、D【解题分析】

①易证得△ABE≌△BCF(ASA),则可得结论①正确;②由△ABE≌△BCF,可得∠FBC=∠BAE,证得∠BAE+∠ABF=90°即可知选项②正确;③根据△BCD是等腰直角三角形,可得选项③正确;④证明△OBE≌△OCF,根据正方形的对角线将面积四等分,即可得出选项④正确.【题目详解】解:①∵四边形ABCD是正方形,∴AB=BC,∠ABE=∠BCF=90°,在△ABE和△BCF中,AB=BC,∠ABE=∠BCF,BE=CF,∴△ABE≌△BCF(SAS),∴AE=BF,故①正确;②由①知:△ABE≌△BCF,∴∠FBC=∠BAE,∴∠FBC+∠ABF=∠BAE+∠ABF=90°,∴AE⊥BF,故②正确;③∵四边形ABCD是正方形,∴BC=CD,∠BCD=90°,∴△BCD是等腰直角三角形,∴BD=BC,∴CE+CF=CE+BE=BC=,故③正确;④∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,在△OBE和△OCF中,OB=OC,∠OBE=∠OCF,BE=CF,∴△OBE≌△OCF(SAS),∴S△OBE=S△OCF,∴S四边形OECF=S△COE+S△OCF=S△COE+S△OBE=S△OBC=S正方形ABCD,故④正确;故选:D.【题目点拨】此题考查了正方形的性质,全等三角形的判定与性质以及等腰直角三角形的性质.注意掌握全等三角形的判定与性质是解此题的关键.8、B【解题分析】

根据平行线的性质以及角平分线的性质证明∠ADE=∠AED,根据等角对等边,即可求得AE的长,在直角△ABE中,利用勾股定理求得BE的长,则CE的长即可求解.【题目详解】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠DEC=∠ADE,又∵∠DEC=∠AED,∴∠ADE=∠AED,∴AE=AD=10,在直角△ABE中,BE=AE2∴CE=BC﹣BE=AD﹣BE=10﹣8=1.故选B.考点:矩形的性质;角平分线的性质.9、B【解题分析】

试题分析:根据直角三角形斜边上的中线等于斜边的一半,可以证明DE=BE,再根据等腰三角形的性质即可解答.解:∵∠ABC=∠ADC=90°,E是AC的中点,∴DE=AC,BE=AC,∴DE=BE,∴∠1=∠1.故选B.考点:直角三角形斜边上的中线;等腰三角形的判定与性质.10、C【解题分析】

根据角平分线的性质与平行四边形的性质对各选项进行逐一分析即可.【题目详解】解:A、由作法可知AE平分∠DAB,所以∠DAE=∠BAE,故本选项不符合题意;B、∵CD∥AB,∴∠DEA=∠BAE=∠DAB,故本选项不符合题意;C、无法证明DE=BE,故本选项符合题意;D、∵∠DAE=∠DEA,∴AD=DE,∵AD=BC,∴BC=DE,故本选项不符合题意.故选B.【题目点拨】本题考查的是作图−基本作图,熟知角平分线的作法和平行四边形的性质是解答此题的关键.二、填空题(每小题3分,共24分)11、1【解题分析】

根据二次根式有意义的条件得到a≥1,根据绝对值的性质把原式化简计算即可.【题目详解】由题意得,a-1≥0,解得,a≥1,则已知等式可化为:a-2018+=a,整理得,=2018,解得,a-1=20182,∴a-20182=1,故答案是:1.【题目点拨】考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键.12、1.2.【解题分析】

根据实物与影子的比相等可得小芳的影长.【题目详解】∵爸爸身高1.8m,小芳比他爸爸矮0.3m,

∴小芳高1.5m,

设小芳的影长为xm,

∴1.5:x=1.8:2.1,

解得x=1.2,

小芳的影长为1.2m.【题目点拨】本题考查了平行投影的知识,解题的关键是理解阳光下实物的影长与影子的比相等.13、x=2.【解题分析】

根据抛物线的对称性,x=0、x=4时的函数值相等,然后列式计算即可得解.【题目详解】∵x=0、x=4时的函数值都是−1,∴此函数图象的对称轴为直线x==2,即直线x=2.故答案为:直线x=2.【题目点拨】此题考查二次函数的性质,解题关键在于利用其对称性求解.14、.【解题分析】

过B作BP⊥AD于P,BQ⊥AC于Q,依据∠BAD=∠BAC,即AB平分∠DAC,可得BP=BQ,进而得出BP=,AD=,S△ABD=AD×BP=,再根据△ABD∽△CBE,可得,即可得到S△CBE=.【题目详解】如图,过B作BP⊥AD于P,BQ⊥AC于Q,由旋转可得,∠CAB=∠D,BD=BA=3,∴∠D=∠BAD,∴∠BAD=∠BAC,即AB平分∠DAC,∴BP=BQ,又∵Rt△ABC中,AB=3,BC=4,∴AC=5,BQ=,∴BP=,∴Rt△ABP中,AP=,∴AD=,∴S△ABD=AD×BP=,由旋转可得,∠ABD=∠CBE,DB=AB,EB=CB,∴△ABD∽△CBE,∴,即,解得S△CBE=,故答案为.【题目点拨】此题考查了旋转的性质、等腰三角形的性质以及相似三角形的判定与性质.此题注意掌握旋转前后图形的对应关系,注意相似三角形的面积之比等于相似比的平方.15、【解题分析】

如图,连接CF,作FM⊥BC于M,FN⊥AC于N.证明△FNA≌△FME(AAS),推出FM=FM,AN=EM,推出四边形CMFN是正方形,推出点F在射线CF上运动(CF是∠ACB的角平分线),求出两种特殊位置CF的长即可解决问题.【题目详解】如图,连接CF,作FM⊥BC于M,FN⊥AC于N.

∵∠FNC=∠MCN=∠FMC=90°,

∴四边形CMFN是矩形,

∴∠MFN=∠AFE=90°,

∴∠AFN=∠MFE,

∵AF=FE,∠FNA=∠FME=90°,

∴△FNA≌△FME(AAS),

∴FM=FM,AN=EM,

∴四边形CMFN是正方形,

∴CN=CM,CF=CM,∠FCN=∠FCM=45°,

∵AC+CE=CN+AN+CM-EM=2CM,

∴CF=(AC+CE).

∴点F在射线CF上运动(CF是∠ACB的角平分线),

当点E与D重合时,CF=(AC+CD)=2,

当点E与B重合时,CF=(AC+CB)=,

∵-2=,

∴点F的运动的路径长为.

故答案为:.【题目点拨】此题考查全等三角形的判定与性质,等腰直角三角形的性质,解题关键在于灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.16、20【解题分析】

试题分析:设该旗杆的高度为xm,根据三角形相似的性质得到同一时刻同一地点物体的高度与其影长的比相等,即有1.6:0.4=x:5,然后解方程即可.解:设该旗杆的高度为xm,根据题意得,1.6:0.4=x:5,解得x=20(m).即该旗杆的高度是20m.17、且【解题分析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于O,可以求出x的范围.【题目详解】解:根据题意得:计算得出:x≥-2且x≠1.故答案是:x≥-2且x≠1.【题目点拨】本题考查了二次根式被开方数大于等于0及分式中分母不能为0等知识.18、1【解题分析】

多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.【题目详解】依题意有:(n﹣2)•180°=720°,解得n=1.故答案为:1.【题目点拨】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.三、解答题(共66分)19、(2)y=﹣2x+2;(2)m的值是或或2;(3)2.【解题分析】

(2)设直线AB的解析式是y=kx+b,代入得到方程组,求出即可;(2)当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,证△BMN≌△ABO(AAS),求出M的坐标即可;②当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,同法求出M的坐标;③当AM⊥BM,且AM=BM时,过M作MN⊥x轴于N,MH⊥y轴于H,证△BHM≌△AMN,求出M的坐标即可.(3)设NM与x轴的交点为H,分别过M、H作x轴的垂线垂足为G,HD交MP于D点,求出H、G的坐标,证△AMG≌△ADH,△AMG≌△ADH≌△DPC≌△NPC,推出PN=PD=AD=AM代入即可求出答案.【题目详解】(2)∵A(2,0),B(0,2),设直线AB的解析式是y=kx+b,代入得:,解得:k=﹣2,b=2,∴直线AB的解析式是y=﹣2x+2.(2)如图,分三种情况:①如图①,当BM⊥BA,且BM=BA时,过M作MN⊥y轴于N,∵BM⊥BA,MN⊥y轴,OB⊥OA,∴∠MBA=∠MNB=∠BOA=90°,∴∠NBM+∠NMB=90°,∠ABO+∠NBM=90°,∴∠ABO=∠NMB,在△BMN和△ABO中,∴△BMN≌△ABO(AAS),MN=OB=2,BN=OA=2,∴ON=2+2=6,∴M的坐标为(2,6),代入y=mx得:m=,②如图②,当AM⊥BA,且AM=BA时,过M作MN⊥x轴于N,易知△BOA≌△ANM(AAS),同理求出M的坐标为(6,2),代入y=mx得:m=,③如图③,当AM⊥BM,且AM=BM时,过M作MN⊥X轴于N,MH⊥Y轴于H,∴四边形ONMH为矩形,易知△BHM≌△AMN,∴MN=MH,设M(x2,x2)代入y=mx得:x2=mx2,∴m=2,答:m的值是或或2.(3)如图3,设NM与x轴的交点为H,过M作MG⊥x轴于G,过H作HD⊥x轴,HD交MP于D点,即:∠MGA=∠DHA=900,连接ND,ND交y轴于C点由与x轴交于H点,∴H(2,0),由与y=kx﹣2k交于M点,∴M(3,k),而A(2,0),∴A为HG的中点,AG=AH,∠MAG=∠DAH∴△AMG≌△ADH(ASA),∴AM=AD又因为N点的横坐标为﹣2,且在上,∴N(-2,﹣k),同理D(2,﹣k)∴N关于y轴对称点为D∴PC是ND的垂直平分线∴PN=PD,CD=NC=HA=2,∠DCP=∠DHA=900,ND平行于X轴∴∠CDP=∠HAD∴△ADH≌△DPC∴AD=PD∴PN=PD=AD=AM,∴.【题目点拨】此题是一次函数综合题,主要考查对一次函数图象上点的坐标特征,等腰直角三角形性质,用待定系数法求正比例函数的解析式,全等三角形的性质和判定,二次根式的性质等知识点的理解和掌握,综合运用这些性质进行推理和计算是解此题的关键.20、(1)如图所示,DF即为所求,见解析;(2)见解析.【解题分析】

(1)直接利用过一点作已知直线的垂线作法得出符合题意的图形;(2)根据角平分线的性质解答即可.【题目详解】(1)如图所示,DF即为所求:(2)∵△ABC中,∠A=60°,∠C=40°,∴∠ABC=80°,∵DE垂直平分BC,∴BD=DC,∴∠DBC=∠C=40°,∴∠ABD=∠DBC=40°,即BD是∠ABC的平分线,∵DF⊥AB,DE⊥BC,∴DF=DE,即点D到BA,BC的距离相等.【题目点拨】此题主要考查了复杂作图,正确利用角平分线的性质解答是解题关键.21、高铁的平均速度为100km/h【解题分析】

设设高铁的平均速度为xkm/h,根据时间=路程÷速度,即可得出关于x的分式方程,解之经检验即可得出结论.【题目详解】设高铁的平均速度为xkm/h,依题意得解得x=100,经检验,x=100是原方程的解,答:高铁的平均速度为100km/h.【题目点拨】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键.22、(1)录取乙;(2)①30,②乙一定能被录用;甲不一定能被录用,见解析.【解题分析】

(1)根据加权平均数的定义与性质即可求解判断;(2)①根据直方图即可求解;②根据直方图判断甲乙所在的分段,即可判断.【题目详解】解:(1)由题意得,(分)(分)∵∴应该录取乙。(2)①30②由频数分布直方图可知成绩最高一组分数段中有1人,而分,所以乙是第一名,一定被录取;在一组有5人,其中有2人被录用,分,可确定甲在本组中,但不能确定甲在本组中排第几名,所以甲不一定能被录用。【题目点拨】此题主要考查统计调查的应用,解题的关键是熟知加权平均数的求解与性质.23、(1)城与台风中心之间的最小距离是;(2)城遭受这次台风影响的时间为小时.【解题分析】

(1)城与台风中心之间的最小距离即为点A到OB的垂线段的长,作,根据直角三角形中所对的直角边等于斜边的一半求解即可;(2)设上点,千米,则还有一点,有千米,则在DG范围内,城遭受这次台风影响,所以求出DG长,除以台风移动的速度即为时间.【题目详解】解:作在中,,则答:城与台风中心之间的最小距离是设上点,千米,则还有一点,有千米是等腰三角形,是的垂直平分线,在中,千米,千米由勾股定理得,(千米)千米,遭受台风影响的时间是:(小时)答:城遭受这次台风影响个时间为小时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论