内蒙古呼伦贝尔市莫旗2024届数学八年级第二学期期末统考试题含解析_第1页
内蒙古呼伦贝尔市莫旗2024届数学八年级第二学期期末统考试题含解析_第2页
内蒙古呼伦贝尔市莫旗2024届数学八年级第二学期期末统考试题含解析_第3页
内蒙古呼伦贝尔市莫旗2024届数学八年级第二学期期末统考试题含解析_第4页
内蒙古呼伦贝尔市莫旗2024届数学八年级第二学期期末统考试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

内蒙古呼伦贝尔市莫旗2024届数学八年级第二学期期末统考试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.将直线y=2x向右平移2个单位,再向上移动4个单位,所得的直线的解析式是()A.y=2x B.y=2x+2 C.y=2x﹣4 D.y=2x+42.下列图案中既是中心对称图形,又是轴对称图形的是()A. B.C. D.3.若函数,则当函数值y=8时,自变量x的值是()A.± B.4 C.±或4 D.4或-4.小明统计了某校八年级(3)班五位同学每周课外阅读的平均时间,其中四位同学每周课外阅读时间分别是小时、小时、小时、小时,第五位同学每周的课外阅读时间既是这五位同学每周课外阅读时间的中位数,又是众数,则第五位同学每周课外阅读时间是()A.小时 B.小时 C.或小时 D.或或小时5.下面四个手机应用图标中是轴对称图形的是()A. B. C. D.6.关于x的一元二次方程x2+4x+k=0有两个实数根,则k的取值范围是()A.k≤﹣4 B.k<﹣4 C.k≤4 D.k<47.某种正方形合金板材的成本y(元)与它的面积成正比,设边长为xcm.当x=3时,y=18,那么当成本为72元时,边长为()A.6cm B.12cm C.24cm D.36cm8.四边形ABCD的对角线互相平分,要使它变为矩形,需要添加的条件是(

)A.AB=CD B.AB=BC C.AC⊥BD D.AC=BD9.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1且x≠0 C.x≥0且x≠1 D.x≠0且x≠110.同学在“爱心捐助”活动中,捐款数额为:8、10、10、4、6(单位:元),这组数据的中位数是()A.10 B.8 C.9 D.6二、填空题(每小题3分,共24分)11.关于x的一元一次不等式组中两个不等式的解集在同一数轴上的表示如图所示,则m的值是_______.12.已知直线与直线平行且经过点,则__.13.一组数据7,5,4,5,9的方差是______.14.将正比例函数的图象向上平移3个单位,所得的直线不经过第______象限.15.函数y=的自变量x的取值范围为_____.16.方程2(x﹣5)2=(x﹣5)的根是_____.17.如图,一次函数y=kx+b的图象经过A、B两点,与x轴交于点C,则此一次函数的解析式为__________,△AOC的面积为_________.18.将一张长与宽之比为的矩形纸片ABCD进行如下操作:对折并沿折痕剪开,发现每一次所得到的两个矩形纸片长与宽之比都是(每一次的折痕如下图中的虚线所示).已知AB=1,则第3次操作后所得到的其中一个矩形纸片的周长是;第2016次操作后所得到的其中一个矩形纸片的周长是.三、解答题(共66分)19.(10分)如图,在△ABC中,∠ACB=90°,点D,E,F分别为AB,AC,BC的中点.求证:CD=EF.20.(6分)如图,在平行四边形ABCD中,O是AB的中点,连接DO并延长交CB的延长线于点E,连接AE、DB.(1)求证:△AOD≌△BOE;(2)若DC=DE,判断四边形AEBD的形状,并说明理由.21.(6分)如图1,为美化校园环境,某校计划在一块长为20m,宽为15m的长方形空地上修建一条宽为a(m)的甬道,余下的部分铺设草坪建成绿地.(1)甬道的面积为m2,绿地的面积为m2(用含a的代数式表示);(2)已知某公园公司修建甬道,绿地的造价W1(元),W2(元)与修建面积S之间的函数关系如图2所示.①园林公司修建一平方米的甬道,绿地的造价分别为元,元.②直接写出修建甬道的造价W1(元),修建绿地的造价W2(元)与a(m)的关系式;③如果学校决定由该公司承建此项目,并要求修建的甬道宽度不少于2m且不超过5m,那么甬道宽为多少时,修建的甬道和绿地的总造价最低,最低总造价为多少元?22.(8分)计算题:(1);(2).23.(8分)为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员卡支付两种支付方式,如图描述了两种方式应支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题:(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.24.(8分)如图,在矩形ABCD中,AE平分∠BAD,交BC于点E,过点E作EF⊥AD于点F,求证:四边形ABEF是正方形.25.(10分)如图,已知在中,分别是的中点,连结.(1)求证:四边形是平行四边形;(2)若,求四边形的周长.26.(10分)已知:如图,在△ABC中,点D在AC上(点D不与A,C重合).若再添加一个条件,就可证出△ABD∽△ACB.(1)你添加的条件是;(2)根据题目中的条件和添加上的条件证明△ABD∽△ACB.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

根据平移的性质“左加右减,上加下减”,即可找出平移后的直线解析式,此题得解.【题目详解】解:y=2(x﹣2)+4=2x.故选A.【题目点拨】本题考查一次函数图象与几何变换,牢记平移的规则“左加右减,上加下减”是解题的关键.2、C【解题分析】判断轴对称的关键是寻找对称轴,两边图象折叠后可重合,判断中心对称是要寻找对称中心,旋转180度后重合A、是轴对称图形,不是中心对称图形,故错误;B、是轴对称图形,不是中心对称图形,故错误;C、是轴对称图形,又是中心对称图形,故正确;D、是轴对称图形,不是中心对称图形,故错误.故选C.3、D【解题分析】

把y=8代入第二个方程,解得x=4大于2,所以符合题意;把y=8代入第一个方程,解得:x=,又由于x小于等于2,所以x=舍去,所以选D4、C【解题分析】

利用众数及中位数的定义解答即可.【题目详解】解:当第五位同学的课外阅读时间为4小时时,此时五个数据为4,4,5,8,10,众数为4,中位数为5,不合题意;当第五位同学的课外阅读时间为5小时时,此时五个数据为4,5,5,8,10,众数为5,中位数为5,符合题意;当第五位同学的课外阅读时间为8小时时,此时五个数据为4,5,8,8,10,众数为8,中位数为8,符合题意;当第五位同学的课外阅读时间为10小时时,此时五个数据为4,5,8,10,10,众数为10,中位数为8,不合题意;故第五位同学的每周课外阅读时间为5或8小时.故答案为C.【题目点拨】本题考查了众数及中位数的概念,解题的关键是根申请题意,并结合题意分类讨论解答.5、D【解题分析】

分别根据轴对称图形与中心对称图形的性质对各选项进行逐一分析即可.【题目详解】A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项错误;C、既不是轴对称图形,也不是中心对称图形,故本选项错误;D、是轴对称图形,故本选项正确.故选D.【题目点拨】本题考查的是轴对称图形,熟知轴对称图形是针对一个图形而言的,是一种具有特殊性质的图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合是解答此题的关键.6、C【解题分析】

根据判别式的意义得△=12﹣1k≥0,然后解不等式即可.【题目详解】根据题意得△=12﹣1k≥0,解得k≤1.故选C.【题目点拨】本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2﹣1ac有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根.7、A【解题分析】

设y与x之间的函数关系式为y=kx2,由待定系数法就可以求出解析式,当y=72时代入函数解析式就可以求出结论.【题目详解】解:设y与x之间的函数关系式为y=kx2,由题意,得18=9k,解得:k=2,∴y=2x2,当y=72时,72=2x2,∴x=1.故选A.【题目点拨】本题考查了待定系数法求函数的解析式的运用,根据解析式由函数值求自变量的值的运用,解答时求出函数的解析式是关键.8、D【解题分析】

四边形ABCD的对角线互相平分,则说明四边形是平行四边形,由矩形的判定定理知,只需添加条件是对角线相等.【题目详解】添加AC=BD,

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC=BD,根据矩形判定定理对角线相等的平行四边形是矩形,

∴四边形ABCD是矩形,

故选D.【题目点拨】考查了矩形的判定,关键是掌握矩形的判定方法:①矩形的定义:有一个角是直角的平行四边形是矩形;②有三个角是直角的四边形是矩形;③对角线相等的平行四边形是矩形.9、C【解题分析】

根据分式和二次根式有意义的条件进行计算即可.【题目详解】由题意得:x≥2且x﹣2≠2.解得:x≥2且x≠2.故x的取值范围是x≥2且x≠2.故选C.【题目点拨】本题考查了函数自变量的取值范围问题,掌握分式和二次根式有意义的条件是解题的关键.10、B【解题分析】

找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【题目详解】题目中数据共有5个,

故中位数是按从小到大排列后第三数作为中位数,

故这组数据的中位数是8.

所以B选项是正确的.【题目点拨】本题属于基础题,考查了确定一组数据的中位数的能力.要明确定义.注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数.如果数据有奇数个,则正中间的数字即为所求;如果是偶数个,则找中间两位数的平均数.二、填空题(每小题3分,共24分)11、m=1【解题分析】

解不等式,表达出解集,根据数轴得出即可.【题目详解】解:不等式,解不等式①得:解不等式②得:,由数轴可知,,解得m=1,故答案为:m=1.【题目点拨】本题考查了根据不等式的解集求不等式中的参数问题,解题的关键是正确解出不等式组,根据解集表达出含参数的方程.12、2【解题分析】

由一次函数y=kx+b的图象与正比例函数y=2x的图象平行得到k=2,然后把点A(1,2)代入一次函数解析式可求出b的值.【题目详解】直线与直线平行,,,把点代入得,解得;,故答案为:2【题目点拨】本题主要考查了两条直线相交或平行问题,待定系数法,解答此类题关键是掌握若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2;若直线y=k1x+b1与直线y=k2x+b2相交,则由两解析式所组成的方程组的解为交点坐标.13、【解题分析】

结合方差公式先求出这组数据的平均数,然后代入公式求出即可.【题目详解】解:这组数据的平均数为,这组数据的方差为.故答案为:.【题目点拨】此题主要考查了方差的有关知识,正确的求出平均数,并正确代入方差公式是解决问题的关键.14、三【解题分析】

根据函数的平移规律,一次函数的性质,可得答案.【题目详解】由正比例函数的图象向上平移3个单位,得,一次函数经过一二四象限,不经过三象限,故答案为:三.【题目点拨】本题考查了一次函数图象与几何变换,利用函数的平移规律:上加下减,左加右减是解题关键.15、x≠1.【解题分析】

根据分式有意义的条件,即可快速作答。【题目详解】解:根据分式有意义的条件,得:x-1≠0,即x≠1;故答案为:x≠1。【题目点拨】本题考查了函数自变量的取值范围,但分式有意义的条件是解题的关键。16、x1=1,x2=1.1【解题分析】

移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】2(x﹣1)2﹣(x﹣1)=0,(x﹣1)[2(x﹣1)﹣1]=0,x﹣1=0,2(x﹣1)﹣1=0,x1=1,x2=1.1,故答案为:x1=1,x2=1.1.【题目点拨】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.17、y=x+21【解题分析】

一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),代入可求出函数关系式.再根据三角形的面积公式,得出△AOC的面积.【题目详解】解:一次函数y=kx+b的图象经过A、B两点,即A(2,1),B(0,2),与x轴交于点C(-2,0),根据一次函数解析式的特点,可得出方程组,解得则此一次函数的解析式为y=x+2,△AOC的面积=|-2|×1÷2=1.则此一次函数的解析式为y=x+2,△AOC的面积为1.故答案为:y=x+2;1.【题目点拨】本题考查的是待定系数法求一次函数的解析式,解答本题的关键是掌握点在函数解析式上,点的横纵坐标就适合这个函数解析式.18、第3次操作后所得到标准纸的周长是:,第2016次操作后所得到标准纸的周长为:.【解题分析】

分别求出每一次对折后的周长,从而得出变化规律求出即可:观察变化规律,得第n次对开后所得标准纸的周长=.【题目详解】对开次数:第一次,周长为:,第二次,周长为:,第三次,周长为:,第四次,周长为:,第五次,周长为:,第六次,周长为:,…∴第3次操作后所得到标准纸的周长是:,第2016次操作后所得到标准纸的周长为:.【题目点拨】本题结合规律和矩形的性质进行考察,题目新颖,解题的关键是分别求出每一次对折后的周长,从而得出变化规律.三、解答题(共66分)19、根据直角三角形的性质可得,再根据中位线定理可得,问题得证.【解题分析】根据直角三角形斜边中中线等于斜边的一半可得,再根据中位线定理可得,从而可以得到20、(1)证明见解析;(2)四边形AEBD是矩形.【解题分析】

(1)利用平行线得到∠ADO=∠BEO,再利用对顶角相等和线段中点,可证明△AOD≌△BOE;(2)先证明四边形AEBD是平行四边形,再利用对角线相等的平行四边形的矩形,可判定四边形AEBD是矩形.【题目详解】(1)∵四边形ABCD是平行四边形,∴AD∥CE,∴∠ADO=∠BEO.∵O是BC中点,∴AO=BO.又∵∠AOD=∠BOE,∴△AOD≌△BOE(AAS);(2)四边形AEBD是矩形,理由如下:∵△AOD≌△BOE,∴DO=EO.又AO=BO,∴四边形AEBD是平行四边形.∵DC=DE=AB,∴四边形AEBD是矩形.【题目点拨】本题考查了平行四边形的性质、全等三角形的判定和性质、矩形的判定和性质,解决这类问题往往是把四边形问题转化为三角形问题解决.21、(1)15a、(300﹣15a);(2)①①80、70;;②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;【解题分析】

(1)根据图形即可求解;(2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元②根据题意即可列出关系式;③W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,再根据2≤a≤5,即可进行求解.【题目详解】解:(1)甬道的面积为15am2,绿地的面积为(300﹣15a)m2;故答案为:15a、(300﹣15a);(2)①园林公司修建一平方米的甬道,绿地的造价分别为=80元,=70元.②W1=80×15a=1200a,W2=70(300﹣15a)=﹣1050a+21000;③设此项修建项目的总费用为W元,则W=W1+W2=1200a+(﹣1050a+21000)=150a+21000,∵k>0,∴W随a的增大而增大,∵2≤a≤5,∴当a=2时,W有最小值,W最小值=150×2+21000=21300,答:甬道宽为2米时,修建的甬道和绿地的总造价最低,最低总造价为21300元;故答案为:①80、70;【题目点拨】此题主要考查一次函数的应用,解题的关键是根据题意得到关系式进行求解.22、(1);(2)1.【解题分析】分析:(1)先把各二次根式化为最简二次根式,然后合并即可;(2)利用平方差公式计算.详解:(1)原式=3-2=;(2)原式=3-(5-3)=1.点睛:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,在进行二次根式的乘除运算,然后合并同类二次根式.23、(1)手机支付金额y(元)与骑行时间x(时)的函数关系式是y=;(2)当x=2时,李老师选择两种支付方式一样;当x>2时,会员卡支付比较合算;当0<x<2时,李老师选择手机支付比较合算.【解题分析】试题分析:(1)由图可知,“手机支付”的函数图象过点(0.5,0)和点(1,0.5),由此即可由“待定系数法”求得对应的函数解析式;(2)先用“待定系数法”求得“会员支付”的函数解析式,结合(1)中所得函数解析式组成方程组,即可求得两个函数图象的交点坐标,由交点坐标结合图象即可得到本题答案;试题解析:(1)由题意和图象可设:手机支付金额y(元)与骑行时间x(时)的函数解析式为:,由图可得:,解得:,∴手机支付金额y(元)与骑行时间x(时)的函数解析式为:;(2)由题意和图象可设会员支付y(元)与骑行时间x(时)的函数解析式为:,由图可得:,由可得:,∴图中两函数图象的交点坐标为(2,1.5),又∵,∴结合图象可得:当时,李老师用“手机支付”更合算;当时,李老师选择两种支付分式花费一样多;当时,李老师选择“会员支付”更合算.点睛:本题是一道一次函数的实际问题,解题时有两个要点:(1)由图中所得信息,求出两个

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论