2024届石嘴山市重点中学八年级数学第二学期期末达标检测模拟试题含解析_第1页
2024届石嘴山市重点中学八年级数学第二学期期末达标检测模拟试题含解析_第2页
2024届石嘴山市重点中学八年级数学第二学期期末达标检测模拟试题含解析_第3页
2024届石嘴山市重点中学八年级数学第二学期期末达标检测模拟试题含解析_第4页
2024届石嘴山市重点中学八年级数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届石嘴山市重点中学八年级数学第二学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.正三角形、正方形、等腰直角三角形、平行四边形中,既是轴对称图形又是中心对称图形的是()A.正三角形 B.正方形 C.等腰直角三角形 D.平行四边形2.已知,如图,,,,的垂直平分交于点,则的长为()A. B. C. D.3.如图所示,正方形ABCD的边长为6,M在DC上,且DM=4,N是AC上的动点,则DN+MN的最小值是()A. B. C. D.4.点P(2,-3)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,矩形ABCD的长和宽分别为6和4,E、F、G、H依次是矩形ABCD各边的中点,则四边形EFGH的周长等于()A.20 B.10 C.4 D.26.如图,在Rt△ABC中,∠C=90°,AB=2BC,则∠A=()A.15° B.30° C.45° D.60°7.菱形和矩形一定都具有的性质是()A.对角线相等 B.对角线互相垂直C.对角线互相平分 D.对角线互相平分且相等8.如图,在矩形中,边的长为,点分别在上,连结,若四边形是菱形,且,则边的长为()A. B. C. D.9.如图所示,一次函数的图像可能是()A. B. C. D.10.下列选项中,矩形具有的性质是()A.四边相等 B.对角线互相垂直 C.对角线相等 D.每条对角线平分一组对角二、填空题(每小题3分,共24分)11.若代数式有意义,则的取值范围为__________.12.因式分解:______.13.如图,将平行四边形ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,有以下四个结论①MN∥BC;②MN=AM;③四边形MNCB是矩形;④四边形MADN是菱形,以上结论中,你认为正确的有_____________(填序号).14.已知一组数据1,a,3,6,7,它的平均数是4,这组数据的方差是_____.15.化成最简二次根式后与最简二次根式的被开方数相同,则a的值为______.16.①412=_________;②3-27=17.如图,在Rt△ABC中,∠C=90°,CD⊥AB于D,若AC=8,BC=6,则CD=_____.18.反比例函数,在同一直角坐标系中的图象如图所示,则的面积为_____.(用含有、代数式表示)三、解答题(共66分)19.(10分)如图,在△ABC中,点D,E分别是边BC,AC上的中点,连接DE,并延长DE至点F,使EF=ED,连接AD,AF,BF,CF,线段AD与BF相交于点O,过点D作DG⊥BF,垂足为点G.(1)求证:四边形ABDF是平行四边形;(2)当时,试判断四边形ADCF的形状,并说明理由;(3)若∠CBF=2∠ABF,求证:AF=2OG.20.(6分)如图,将一矩形纸片OABC放在平面直角坐标系中,O(1,1),A(6,1),C(1,3),动点F从点O出发以每秒1个单位长度的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相同的速度沿AO向终点O运动,当点E、F其中一点到达终点时,另一点也停止运动设点E的运动时间为t:(秒)(1)OE=,OF=(用含t的代数式表示)(2)当t=1时,将△OEF沿EF翻折,点O恰好落在CB边上的点D处①求点D的坐标及直线DE的解析式;②点M是射线DB上的任意一点,过点M作直线DE的平行线,与x轴交于N点,设直线MN的解析式为y=kx+b,当点M与点B不重合时,S为△MBN的面积,当点M与点B重合时,S=1.求S与b之间的函数关系式,并求出自变量b的取值范围.21.(6分)如图,正方形ABCD中,E、F分别是AB、BC边上的点,且AE=BF,求证:AF⊥DE.22.(8分)某产品生产车间有工人10名.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.在这10名工人中,车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.(1)请写出此车间每天获取利润y(元)与x(人)之间的函数关系式;(2)若要使此车间每天获取利润为14400元,要派多少名工人去生产甲种产品?(3)若要使此车间每天获取利润不低于15600元,你认为至少要派多少名工人去生产乙种产品才合适?23.(8分)观察下列各式:①,②;③,…(1)请观察规律,并写出第④个等式:;(2)请用含n(n≥1)的式子写出你猜想的规律:;(3)请证明(2)中的结论.24.(8分)某学校积极响应正在开展的“创文活动”,组织甲、乙两个志愿工程队对所在社区的一些区域进行绿化改造,已知乙工程队每小时能完成的绿化面积是甲工程队每小时能完成的绿化面积的1.5倍,并且乙工程队完成200平方米的绿化面积比甲工程队完成200平方米的绿化面积少用2小时,甲工程队每小时能完成多少平方米的绿化面积?25.(10分)计算:(1)(3.14﹣π)0+(﹣)﹣2﹣2×2﹣1(2)(2a2+ab﹣2b2)(﹣ab)26.(10分)如图,在Rt△ABC中,∠ACB=90°,∠ABC=30°,AD平分∠CAB交BC于点D,CD=1,延长AC到E,使AE=AB,连接DE,BE.(1)求BD的长;(2)求证:DA=DE.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】试题分析:正三角形,等腰直角三角形是轴对称图形,平行四边形是中心对称图形,既是轴对称图形又是中心对称图形的是:正方形,故选B.考点:1、中心对称图形;2、轴对称图形2、D【解题分析】

根据中位线的性质得出,,然后根据勾股定理即可求出DE的长.【题目详解】垂直平分,为中边上的中位线,∴,在中,,.故选D.【题目点拨】本题考查了三角形的线段长问题,掌握中位线的性质、勾股定理是解题的关键.3、B【解题分析】

连BD,BM,BM交AC于N′,根据正方形的性质得到B点与D点关于AC对称,则有N′D+N′M=BM,利用两点之间线段最短得到BM为DN+MN的最小值,然后根据勾股定理计算即可.【题目详解】连BD,BM,BM交AC于N′,如图,∵四边形ABCD为正方形,∴B点与D点关于AC对称,∴N′D=N′B,∴N′D+N′M=BM,∴当N点运动到N′时,它到D点与M点的距离之和最小,最小距离等于MB的长,而BC=CD=6,DM=4,∴MC=2,∴BM=.故选:B.【题目点拨】此题考查轴对称-最短路线问题,勾股定理,正方形的性质,解题关键在于作辅助线.4、D【解题分析】

根据各象限内点的坐标特征解答.【题目详解】解:点P(2,-3)在第四象限.故选:D.【题目点拨】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).5、C【解题分析】

根据矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,利用三角形中位线定理求证EF=GH=FG=EH,然后利用四条边都相等的平行四边形是菱形.根据菱形的性质来计算四边形EFGH的周长即可.【题目详解】如图,连接BD,AC.在矩形ABCD中,AB=4,AD=6,∠DAB=90°,则由勾股定理易求得BD=AC=2.∵矩形ABCD中,E、F、G、H分别是AD、AB、BC、CD的中点,∴EF为△ABC的中位线,∴EF=AC=,EF∥AC,又GH为△BCD的中位线,∴GH=AC=,GH∥AC,∴HG=EF,HG∥EF,∴四边形EFGH是平行四边形.同理可得:FG=BD=,EH=AC=,∴EF=GH=FG=EH=,∴四边形EFGH是菱形.∴四边形EFGH的周长是:4EF=4,故选C.【题目点拨】此题考查中点四边形,掌握三角形中位线定理是解题关键6、B【解题分析】

逆用直角三角形的性质:30度角所对的直角边等于斜边的一半,即可得出答案.【题目详解】在Rt△ABC中,∵∠C=90°,AB=2BC,∴∠A=30°.故选B.【题目点拨】本题考查了直角三角形的性质.熟练应用直角三角形的性质:30度角所对的直角边等于斜边的一半是解题的关键.7、C【解题分析】

菱形的对角线互相垂直且平分,矩形的对角线相等且平分.菱形和矩形一定都具有的性质是对角线互相平分.【题目详解】菱形和矩形一定都具有的性质是对角线互相平分.故选C.【题目点拨】本题考查了菱形及矩形的性质,熟知菱形和矩形的对角线的性质是解决本题的关键.8、C【解题分析】

根据菱形的性质得出,,,再根据矩形的性质以及全等三角形的性质得出,,继而推出答案.【题目详解】解:四边形为菱形,,四边形为矩形又.故选:C.【题目点拨】本题考查的知识点有菱形的性质、矩形的性质、全等三角形的判定及性质、含30度角的直角三角形的性质,利用已知条件推出是解此题的关键.9、D【解题分析】分析:根据题意,当m≠0时,函数y=mx+m是一次函数,结合一次函数的性质,分m>0与m<0两种情况讨论,可得答案.详解:根据题意,当m≠0时,函数y=mx+m是一次函数,有两种情况:(1)当m>0时,其图象过一二三象限,D选项符合,(2)当m<0时,其图象过二三四象限,没有选项的图象符合,故选D.点睛:本题考查了一次函数的定义、图象和性质.熟练应用一次函数的性质对图象进行辨别是解题的关键.10、C【解题分析】

根据矩形的性质逐项分析即可.【题目详解】A.四边相等是菱形的性质,不是矩形的性质,故不符合题意;B.对角线互相垂直是菱形的性质,不是矩形的性质,故不符合题意;C.对角线相等是是矩形的性质,故符合题意;D.每条对角线平分一组对角是菱形的性质,不是矩形的性质,故不符合题意;故选C.【题目点拨】本题考查了矩形的性质:①矩形的对边平行且相等;②矩形的四个角都是直角;③矩形的对角线相等且互相平分;二、填空题(每小题3分,共24分)11、且.【解题分析】

根据二次根式和分式有意义的条件进行解答即可.【题目详解】解:∵代数式有意义,∴x≥0,x-1≠0,解得x≥0且x≠1.故答案为x≥0且x≠1.【题目点拨】本题考查了二次根式和分式有意义的条件,二次根式的被开方数为非负数,分式的分母不为零.12、【解题分析】

首先把公因式3提出来,然后按照完全平方公式因式分解即可.【题目详解】解:==故答案为:.【题目点拨】此题考查利用提取公因式法和公式法因式分解,注意找出整式里面含有的公因式,然后再选用公式法.13、①②④【解题分析】

根据四边形ABCD是平行四边形,可得∠B=∠D,再根据折叠可得∠D=∠NMA,再利用等量代换可得∠B=∠NMA,然后根据平行线的判定方法可得MN∥BC;证明四边形AMND是平行四边形,再根据折叠可得AM=DA,进而可证出四边形AMND为菱形,再根据菱形的性质可得MN=AM,不能得出∠B=90°;即可得出结论.【题目详解】解:∵四边形ABCD是平行四边形,∴∠B=∠D,∵根据折叠可得∠D=∠NMA,∴∠B=∠NMA,∴MN∥BC;①正确;∵四边形ABCD是平行四边形,∴DN∥AM,AD∥BC,∵MN∥BC,∴AD∥MN,∴四边形AMND是平行四边形,根据折叠可得AM=DA,∴四边形AMND为菱形,∴MN=AM;②④正确;没有条件证出∠B=90°,④错误;故答案为①②④.【题目点拨】本题主要考查了翻折变换的性质、平行四边形的判定与性质、菱形的判定与性质、矩形的判定等知识,熟练掌握翻折变换的性质、平行四边形和菱形以及矩形的判定是解题的关键.14、【解题分析】

根据平均数确定出a后,再根据方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2]计算方差.【题目详解】解:由平均数的公式得:(1+a+3+6+7)÷5=4,解得a=3;∴方差=[(1-4)2+(3-4)2+(3-4)2+(6-4)2+(7-4)2]÷5=.故答案为.【题目点拨】此题考查了平均数和方差的定义.平均数是所有数据的和除以所有数据的个数.方差的公式S2=[(x1-)2+(x2-)2+…+(xn-)2].15、1.【解题分析】

先将化成最简二次根式,然后根据同类二次根式得到被开方数相同可得出关于a的方程,解出即可.【题目详解】∵与最简二次根式是同类二次根式,且=1,∴a+1=3,解得:a=1.故答案为1.【题目点拨】本题考查了同类二次根式的定义:化成最简二次根式后,被开方数相同,这样的二次根式叫做同类二次根式.16、①322,②-3,③4x【解题分析】

①根据二次根式的性质化简即可解答②根据立方根的性质计算即可解答③根据积的乘方,同底数幂的除法,进行计算即可解答【题目详解】①412=②3-27③(2x)2⋅x3÷【题目点拨】此题考查二次根式的性质,同底数幂的除法,解题关键在于掌握运算法则17、4.1.【解题分析】

直接利用勾股定理得出AB的值,再利用直角三角形面积求法得出答案.【题目详解】∵∠C=90°,AC=1,BC=6,∴AB2.∵CD⊥AB,∴DC×AB=AC×BC,∴DC4.1.故答案为:4.1.【题目点拨】本题考查了勾股定理,正确利用直角三角形面积求法是解题的关键.18、【解题分析】【分析】设A(m,n),则有mn=k1,再根据矩形的性质可求得点N(,n),点M(m,),继而可得AN=m-,AM=n-,再根据三角形面积公式即可得答案.【题目详解】如图,设A(m,n),则有mn=k1,由图可知点N坐标为(,n),点M(m,),∴AN=m-,AM=n-,∴S△AMN=AM•AN====,故答案为.【题目点拨】本题考查了反比例函数图象上的点的坐标特征、三角形面积的计算,熟知反比例函数图象上的点的坐标满足反比例函数的解析式是解题的关键.三、解答题(共66分)19、(1)证明见解析;(2)四边形ADCF是矩形,理由见解析;(3)证明见解析.【解题分析】

(1)欲证明四边形ABDF是平行四边形,只要证明AF∥BD,AF=BD即可.(2)结论:四边形ADCF是矩形,只要证明∠DAF=90°即可.(3)作AM⊥DG于M,连接BM,先证明AM=2OG,再证明AM=AF即可解决问题.【题目详解】(1)证明:∵点D,E分别是边BC,AC上的中点,∴ED∥AB,AE=CE,∵EF=ED,∴四边形ADCF是平行四边形,∴AF∥BC,∴四边形ABDF是平行四边形;(2)四边形ADCF是矩形.理由:∵AE=DF,EF=ED,∴AE=EF=DE,∴∠EAF=∠AFE,∠DAE=∠ADE,∴∠DAF=∠EAF+∠EAD=×180°=90°,由(1)知:四边形ADCF是平行四边形;∴四边形ADCF是矩形;(3)证明:作AM⊥DG于M,连接BM.∵四边形ABDF是平行四边形,∴OA=OD,∵OG∥AM,∴GM=GD,∴AM=2OG,∵BG⊥DM,GM=GD,∴BM=BD,∴∠CBF=∠MBG,∵∠CBF=2∠ABF,∴∠ABM=∠ABF,∵AM∥BF,∴∠MAB=∠ABF,∴∠MAB=∠MBA,∴AM=BM=BD=AF=2OG,∴AF=2OG.【题目点拨】本题考查四边形综合题、平行四边形的判定和性质、矩形的判定和性质、三角形中位线定理等知识,解题的关键是灵活应用这些知识解决问题,学会添加常用辅助线.20、(1)6-t,+t;(2)①直线DE的解析式为:y=-;②【解题分析】

(1)由O(1,1),A(6,1),C(1,3),可得:OA=6,OC=3,根据矩形的对边平行且相等,可得:AB=OC=3,BC=OA=6,进而可得点B的坐标为:(6,3),然后根据E点与F点的运动速度与运动时间即可用含t的代数式表示OE,OF;(2)①由翻折的性质可知:△OPF≌△DPF,进而可得:DF=OF,然后由t=1时,DF=OF=,CF=OC-OF=,然后利用勾股定理可求CD的值,进而可求点D和E的坐标;利用待定系数可得直线DE的解析式;②先确定出k的值,再分情况计算S的表达式,并确认b的取值.【题目详解】(1)∵O(1,1),A(6,1),C(1,3),∴OA=6,OC=3,∵四边形OABC是矩形,∴AB=OC=3,BC=OA=6,∴B(6,3),∵动点F从O点以每秒1个单位长的速度沿OC向终点C运动,运动秒时,动点E从点A出发以相等的速度沿AO向终点O运动,∴当点E的运动时间为t(秒)时,AE=t,OF=+t,则OE=OA-AE=6-t,故答案为:6-t,+t;(2)①当t=1时,OF=1+=,OE=6-1=5,则CF=OC-OF=3-=,由折叠可知:△OEF≌△DEF,∴OF=DF=,由勾股定理,得:CD=1,∴D(1,3);∵E(5,1),∴设直线DE的解析式为:y=mx+n(k≠1),把D(1,3)和E(5,1)代入得:,解得:,∴直线DE的解析式为:y=-;②∵MN∥DE,∴MN的解析式为:y=-,当y=3时,-=3,x=(b-3)=b-4,∴CM=b-4,分三种情况:i)当M在边CB上时,如图2,∴BM=6-CM=6-(b-4)=11-b,DM=CM-1=b-5,∵1≤DM<5,即1≤b-5<5,∴≤b<,∴S=BM•AB=×3(11−b)=15-2b=-2b+15(≤b<);ii)当M与点B重合时,b=,S=1;iii)当M在DB的延长线上时,如图3,∴BM=CM-6=b-11,DM=CM-1=b-5,∵DM>5,即b-5>5,∴b>,∴S=BM•AB=×3(b−11)=2b-15(b>);综上,.【题目点拨】本题是四边形和一次函数的综合题,考查了动点的问题、矩形的性质、全等三角形的判定与性质等知识,解(1)的关键是:明确动点的时间和速度;解(2)的关键是:由翻折的性质可知:△OEF≌△DEF,并采用了分类讨论的思想,注意确认b的取值范围.21、证明见解析【解题分析】

由题意先证明△ADE≌△BAF,得出∠EDA=∠FAB,再根据∠ADE+∠AED=90°,推得∠FAE+∠AED=90°,从而证出AF⊥DE.【题目详解】解:∵四边形ABCD为正方形,∴DA=AB,∠DAE=∠ABF=90°,又∵AE=BF,∴△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠FAE+∠AED=90°,∴∠AGE=90°,∴AF⊥DE.【题目点拨】本题考查正方形的性质;全等三角形的判定与性质.22、(1)y=﹣200x+1(2)2(3)2【解题分析】

(1)根据每个工人每天生产的产品个数以及每个产品的利润,表示出总利润即可.(2)根据每天获取利润为14400元,则y=14400,求出即可.(3)根据每天获取利润不低于15200元即y≥15200,求出即可.【题目详解】解:(1)根据题意得:y=12x×100+10(10﹣x)×180=﹣200x+1.(2)当y=14400时,有14400=﹣200x+1,解得:x=2.∴要派2名工人去生产甲种产品.(3)根据题意可得,y≥15200,即﹣200x+1≥15200,解得:x≤4,∴10﹣x≥2,∴至少要派2名工人去生产乙种产品才合适.23、(1);(2);(3)详见解析.【解题分析】试题分析:(1)认真观察题中所给的式子,得出其规律并根据规律写出第④个等式;

(2)根据规律写出含n的式子即可;

(3)结合二次根式的性质进行化简求解验证即可.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论