




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省康定市2024届高三第一次模拟考试数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.抛掷一枚质地均匀的硬币,每次正反面出现的概率相同,连续抛掷5次,至少连续出现3次正面朝上的概率是()A. B. C. D.2.已知纯虚数满足,其中为虚数单位,则实数等于()A. B.1 C. D.23.如图是计算值的一个程序框图,其中判断框内应填入的条件是()A.B.C.D.4.已知数列,,,…,是首项为8,公比为得等比数列,则等于()A.64 B.32 C.2 D.45.已知定义在上的可导函数满足,若是奇函数,则不等式的解集是()A. B. C. D.6.一个正四棱锥形骨架的底边边长为,高为,有一个球的表面与这个正四棱锥的每个边都相切,则该球的表面积为()A. B. C. D.7.已知圆:,圆:,点、分别是圆、圆上的动点,为轴上的动点,则的最大值是()A. B.9 C.7 D.8.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为()A. B.C. D.9.已知复数为虚数单位),则z的虚部为()A.2 B. C.4 D.10.已知是空间中两个不同的平面,是空间中两条不同的直线,则下列说法正确的是()A.若,且,则B.若,且,则C.若,且,则D.若,且,则11.的内角的对边分别为,已知,则角的大小为()A. B. C. D.12.元代数学家朱世杰的数学名著《算术启蒙》是中国古代代数学的通论,其中关于“松竹并生”的问题:松长五尺,竹长两尺,松日自半,竹日自倍,松竹何日而长等.下图是源于其思想的一个程序图,若,,则输出的()A.3 B.4 C.5 D.6二、填空题:本题共4小题,每小题5分,共20分。13.已知椭圆与双曲线(,)有相同的焦点,其左、右焦点分别为、,若椭圆与双曲线在第一象限内的交点为,且,则双曲线的离心率为__________.14.在平面直角坐标系中,点在曲线:上,且在第四象限内.已知曲线在点处的切线为,则实数的值为__________.15.已知关于的方程在区间上恰有两个解,则实数的取值范围是________16.已知x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,则三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,四棱锥E﹣ABCD的侧棱DE与四棱锥F﹣ABCD的侧棱BF都与底面ABCD垂直,,//,.(1)证明://平面BCE.(2)设平面ABF与平面CDF所成的二面角为θ,求.18.(12分)如图,四边形中,,,,沿对角线将翻折成,使得.(1)证明:;(2)求直线与平面所成角的正弦值.19.(12分)已知椭圆的右焦点为,直线被称作为椭圆的一条准线,点在椭圆上(异于椭圆左、右顶点),过点作直线与椭圆相切,且与直线相交于点.(1)求证:.(2)若点在轴的上方,当的面积最小时,求直线的斜率.附:多项式因式分解公式:20.(12分)设函数.(1)当时,求不等式的解集;(2)若存在,使得不等式对一切恒成立,求实数的取值范围.21.(12分)一酒企为扩大生产规模,决定新建一个底面为长方形的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形(如图所示),其中.结合现有的生产规模,设定修建的发酵池容积为450米,深2米.若池底和池壁每平方米的造价分别为200元和150元,发酵池造价总费用不超过65400元(1)求发酵池边长的范围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4米和米的走道(为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.22.(10分)在,角、、所对的边分别为、、,已知.(1)求的值;(2)若,边上的中线,求的面积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】
首先求出样本空间样本点为个,再利用分类计数原理求出三个正面向上为连续的3个“1”的样本点个数,再求出重复数量,可得事件的样本点数,根据古典概型的概率计算公式即可求解.【详解】样本空间样本点为个,具体分析如下:记正面向上为1,反面向上为0,三个正面向上为连续的3个“1”,有以下3种位置1____,__1__,____1.剩下2个空位可是0或1,这三种排列的所有可能分别都是,但合并计算时会有重复,重复数量为,事件的样本点数为:个.故不同的样本点数为8个,.故选:A【点睛】本题考查了分类计数原理与分步计数原理,古典概型的概率计算公式,属于基础题2、B【解析】
先根据复数的除法表示出,然后根据是纯虚数求解出对应的的值即可.【详解】因为,所以,又因为是纯虚数,所以,所以.故选:B.【点睛】本题考查复数的除法运算以及根据复数是纯虚数求解参数值,难度较易.若复数为纯虚数,则有.3、B【解析】
根据计算结果,可知该循环结构循环了5次;输出S前循环体的n的值为12,k的值为6,进而可得判断框内的不等式.【详解】因为该程序图是计算值的一个程序框圈所以共循环了5次所以输出S前循环体的n的值为12,k的值为6,即判断框内的不等式应为或所以选C【点睛】本题考查了程序框图的简单应用,根据结果填写判断框,属于基础题.4、A【解析】
根据题意依次计算得到答案.【详解】根据题意知:,,故,,.故选:.【点睛】本题考查了数列值的计算,意在考查学生的计算能力.5、A【解析】
构造函数,根据已知条件判断出的单调性.根据是奇函数,求得的值,由此化简不等式求得不等式的解集.【详解】构造函数,依题意可知,所以在上递增.由于是奇函数,所以当时,,所以,所以.由得,所以,故不等式的解集为.故选:A【点睛】本小题主要考查构造函数法解不等式,考查利用导数研究函数的单调性,考查化归与转化的数学思想方法,属于中档题.6、B【解析】
根据正四棱锥底边边长为,高为,得到底面的中心到各棱的距离都是1,从而底面的中心即为球心.【详解】如图所示:因为正四棱锥底边边长为,高为,所以,到的距离为,同理到的距离为1,所以为球的球心,所以球的半径为:1,所以球的表面积为.故选:B【点睛】本题主要考查组合体的表面积,还考查了空间想象的能力,属于中档题.7、B【解析】试题分析:圆的圆心,半径为,圆的圆心,半径是.要使最大,需最大,且最小,最大值为的最小值为,故最大值是;关于轴的对称点,,故的最大值为,故选B.考点:圆与圆的位置关系及其判定.【思路点睛】先根据两圆的方程求出圆心和半径,要使最大,需最大,且最小,最大值为的最小值为,故最大值是,再利用对称性,求出所求式子的最大值.8、C【解析】
将函数解析式化简,并求得,根据当时可得的值域;由函数在上单调递减可得的值域,结合存在性成立问题满足的集合关系,即可求得的取值范围.【详解】依题意,则,当时,,故函数在上单调递增,当时,;而函数在上单调递减,故,则只需,故,解得,故实数的取值范围为.故选:C.【点睛】本题考查了导数在判断函数单调性中的应用,恒成立与存在性成立问题的综合应用,属于中档题.9、A【解析】
对复数进行乘法运算,并计算得到,从而得到虚部为2.【详解】因为,所以z的虚部为2.【点睛】本题考查复数的四则运算及虚部的概念,计算过程要注意.10、D【解析】
利用线面平行和垂直的判定定理和性质定理,对选项做出判断,举出反例排除.【详解】解:对于,当,且,则与的位置关系不定,故错;对于,当时,不能判定,故错;对于,若,且,则与的位置关系不定,故错;对于,由可得,又,则故正确.故选:.【点睛】本题考查空间线面位置关系.判断线面位置位置关系利用好线面平行和垂直的判定定理和性质定理.一般可借助正方体模型,以正方体为主线直观感知并准确判断.11、A【解析】
先利用正弦定理将边统一化为角,然后利用三角函数公式化简,可求出解B.【详解】由正弦定理可得,即,即有,因为,则,而,所以.故选:A【点睛】此题考查了正弦定理和三角函数的恒等变形,属于基础题.12、B【解析】分析:根据流程图中的可知,每次循环的值应是一个等比数列,公比为;根据流程图中的可知,每次循环的值应是一个等比数列,公比为,根据每次循环得到的的值的大小决定循环的次数即可.详解:记执行第次循环时,的值记为有,则有;记执行第次循环时,的值记为有,则有.令,则有,故,故选B.点睛:本题为算法中的循环结构和数列通项的综合,属于中档题,解题时注意流程图中蕴含的数列关系(比如相邻项满足等比数列、等差数列的定义,是否是求数列的前和、前项积等).二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
先根据椭圆得出焦距,结合椭圆的定义求出,结合双曲线的定义求出双曲线的实半轴,最后利用离心率的公式求出离心率即可.【详解】解:因为椭圆,则焦点为,又因为椭圆与双曲线(,)有相同的焦点,椭圆与双曲线在第一象限内的交点为,且,在椭圆中:由椭圆的定义:在双曲线中:,所以双曲线的实轴长为:,实半轴为则双曲线的离心率为:.故答案为:【点睛】本题主要考查椭圆与双曲线的定义,考查离心率的求解,利用定义解决综合问题.14、【解析】
先设切点,然后对求导,根据切线方程的斜率求出切点的横坐标,代入原函数求出切点的纵坐标,即可得出切得,最后将切点代入切线方程即可求出实数的值.【详解】解:依题意设切点,因为,则,又因为曲线在点处的切线为,,解得,又因为点在第四象限内,则,.则又因为点在切线上.所以.所以.故答案为:【点睛】本题考查了导数的几何意义,以及导数的运算法则和已知切线斜率求出切点坐标,本题属于基础题.15、【解析】
先换元,令,将原方程转化为,利用参变分离法转化为研究两函数的图像交点,观察图像,即可求出.【详解】因为关于的方程在区间上恰有两个解,令,所以方程在上只有一解,即有,直线与在的图像有一个交点,由图可知,实数的取值范围是,但是当时,还有一个根,所以此时共有3个根.综上实数的取值范围是.【点睛】本题主要考查学生运用转化与化归思想的能力,方程有解问题转化成两函数的图像有交点问题,是常见的转化方式.16、3【解析】
先根据约束条件画出可行域,再由y=2x-z表示直线在y轴上的截距最大即可得解.【详解】x,y满足约束条件x-y-1≥0x+y-3≤02y+1≥0,画出可行域如图所示.目标函数z=2x-y,即平移直线y=2x-z,截距最大时即为所求.2y+1=0x-y-1=0点A(12,z在点A处有最小值:z=2×1故答案为:32【点睛】本题主要考查线性规划的基本应用,利用数形结合,结合目标函数的几何意义是解决此类问题的基本方法.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】
(1)根据线面垂直的性质定理,可得DE//BF,然后根据勾股定理计算可得BF=DE,最后利用线面平行的判定定理,可得结果.(2)利用建系的方法,可得平面ABF的一个法向量为,平面CDF的法向量为,然后利用向量的夹角公式以及平方关系,可得结果.【详解】(1)因为DE⊥平面ABCD,所以DEAD,因为AD=4,AE=5,DE=3,同理BF=3,又DE⊥平面ABCD,BF⊥平面ABCD,所以DE//BF,又BF=DE,所以平行四边形BEDF,故DF//BE,因为BE平面BCE,DF平面BCE所以DF//平面BCE;(2)建立如图空间直角坐标系,则D(0,0,0),A(4,0,0),C(0,4,0),F(4,3,﹣3),,设平面CDF的法向量为,由,令x=3,得,易知平面ABF的一个法向量为,所以,故.【点睛】本题考查线面平行的判定以及利用建系方法解决面面角问题,属基础题.18、(1)见证明;(2)【解析】
(1)取的中点,连.可证得,,于是可得平面,进而可得结论成立.(2)运用几何法或向量法求解可得所求角的正弦值.【详解】(1)证明:取的中点,连.∵,∴.又,∴.在中,,∴.又,∴平面,又平面,∴.(2)解法1:取的中点,连结,∵,∴,又,∴.又由题意得为等边三角形,∴,∵,∴平面.作,则有平面,∴就是直线与平面所成的角.设,则,在等边中,.又在中,,故.在中,由余弦定理得,∴,∴直线与平面所成角的正弦值为.解法2:由题意可得,建立如图所示的空间直角坐标系.不妨设,则在直角三角形中,可得,作于,则有平面几何知识可得,∴.又可得,.∴,.设平面的一个法向量为,由,得,令,则得.又,设直线与平面所成的角为,则.所以直线与平面所成角的正弦值为.【点睛】利用向量法求解直线和平面所成角时,关键点是恰当建立空间直角坐标系,确定斜线的方向向量和平面的法向量.解题时通过平面的法向量和直线的方向向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角或钝角的补角,取其余角就是斜线与平面所成的角.求解时注意向量的夹角与线面角间的关系.19、(1)证明见解析(2)【解析】
(1)由得令可得,进而得到,同理,利用数量积坐标计算即可;(2),分,两种情况讨论即可.【详解】(1)证明:点的坐标为.联立方程,消去后整理为有,可得,,.可得点的坐标为.当时,可求得点的坐标为,,.有,故有.(2)若点在轴上方,因为,所以有,由(1)知①因为时.由(1)知,由函数单调递增,可得此时.②当时,由(1)知令由,故当时,,此时函数单调递增:当时,,此时函数单调递减,又由,故函数的最小值,函数取最小值时,可求得.由①②知,若点在轴上方,当的面积最小时,直线的斜率为.【点睛】本题考查直线与椭圆的位置关系,涉及到分类讨论求函数的最值,考查学生的运算求解能力,是一道难题.20、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)时,根据绝对值不等式的定义去掉绝对值,求不等式的解集即可;(Ⅱ)不等式的解集为,等价于,求出在的最小值即可.【详解】(Ⅰ)当时,时,不等式化为,解得,即时,不等式化为,不等式恒成立,即时,不等式化为,解得,即综上所述,不等式的解集为(Ⅱ)不等式的解集为对任意恒成
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 生物识别技术在工业互联网平台上的设备维护与优化报告
- 基于2025年城市交通规划的城市轨道交通站点周边交通组织优化策略分析报告
- 零售行业2025年会员活动策划与顾客忠诚度提升策略研究
- 高中数学必修一集合复习课件
- 2025年肝胆疾病用药项目合作计划书
- 2025年紫外光固化油墨项目合作计划书
- 车间安全生产工作总结(资料22篇)
- 2025年口服降血糖药项目合作计划书
- 学易密卷:段考模拟君之2025-2026学年七年级英语上学期期末原创卷A卷(河北)(考试版)
- 粮食运输合同范本(2025版)
- 2024年计算机一级Ms office考试复习题库500题(含答案)
- 安全使用电脑和互联网
- 会计师事务所培训
- 班主任安全管理培训
- 护理查房阵发性室上性心动过速护理
- 多元智能测评
- 中职英语 基础模块2 Unit 1 Travel
- 鹤岗市昌瑞污、废水处理厂项目环境影响报告书
- 交通强国建设纲要全面解读PPT
- DB22-T 3474-2023羊草菌根化育苗栽培技术规程
- 金蝶KIS旗舰版操作手册
评论
0/150
提交评论