




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省南京秦淮区南航附中数学八年级第二学期期末复习检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.函数y=中,自变量x的取值范围是()A.x>3 B.x<3 C.x=3 D.x≠32.若分式x2-1x2+x-2的值为零,则A.x=1 B.x=±1 C.x=-1 D.x≠13.下列命题中,正确的是()A.两条对角线相等的四边形是平行四边形B.两条对角线相等且互相垂直的四边形是矩形C.两条对角线互相垂直平分的四边形是菱形D.两条对角线互相平分且相等的四边形是正方形4.二次根式中,字母的取值范围是()A. B. C. D.5.下列各组数,不能作为直角三角形的三边长的是()A.3,4,5 B.1,1, C.2,3,4 D.6,8,106.等边△ABC的边长为6,点O是三边垂直平分线的交点,∠FOG=120°,∠FOG的两边OF,OG分别交AB,BC与点D,E,∠FOG绕点O顺时针旋转时,下列四个结论正确的是()①OD=OE;②;③;④△BDE的周长最小值为9.A.1个 B.2个 C.3个 D.4个7.如图,Rt△ABC的直角边AB在数轴上,点A表示的实数为0,以A为圆心,AC的长为半径作弧交数轴的负半轴于点D,若CB=1,AB=2,则点D表示的实数为()A.5 B.-5 C.3 D.8.下列定理中,没有逆定理的是()A.两直线平行,同位角相等B.全等三角形的对应边相等C.全等三角形的对应角相等D.在角的内部,到角的两边距离相等的点在角的平分线上9.如图,已知P为正方形ABCD外的一点,PA=1,PB=2,将△ABP绕点B顺时针旋转90°,使点P旋转至点P′,且AP′=3,则∠BP′C的度数为()A.105° B.112.5° C.120° D.135°10.如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是()A.4.8 B.5 C.6 D.7.2二、填空题(每小题3分,共24分)11.边长为的正方形ABCD与直角三角板如图放置,延长CB与三角板的一条直角边相交于点E,则四边形AECF的面积为________.12.某种细菌的直径约为0.00000002米,用科学记数法表示该细菌的直径约为____米.13.如果一个平行四边形一个内角的平分线分它的一边为1∶2的两部分,那么称这样的平行四边形为“协调平行四边形”,称该边为“协调边”.当“协调边”为3时,这个平行四边形的周长为_________.14.设正比例函数y=mx的图象经过点A(m,4),且y的值随x值的增大而减小,则m=_____.15.如图,四边形ABCD是梯形,AD∥BC,AC=BD,且AC⊥BD,如果梯形ABCD的中位线长是5,那么这个梯形的高AH=___.16.分解因式:____.17.某农科院在相同条件下做了某种苹果幼树移植成活率的试验,结果如下,那么该苹果幼树移植成活的概率估计值为______.(结果精确到0.1)18.如图,在平行四边形中,,,,则______.三、解答题(共66分)19.(10分)某工厂甲、乙两人加工同一种零件,每小时甲比乙多加工10个这种零件,甲加工150个这种零件所用的时间与乙加工120个这种零件所用的时间相等,(1)甲、乙两人每小时各加工多少个这种零件?(2)该工厂计划加工920个零件,甲参与加工这批零件不超过12小时,则乙至少加工多少小时才能加工完这批零件?20.(6分)已知x=-1,y=+1,求代数式x2+xy+y2的值.21.(6分)为了了解同学们对垃圾分类知识的知晓程度,增强同学们的环保意识,普及垃圾分类及投放的相关知识.某校环保社团的同学们设计了“垃圾分类知识及投放情况”的问卷,并在本校随机抽取了若干名同学进行了问卷测试,根据测试成绩分布情况,他们将全部成绩分成A,B,C,D四组,并绘制了如下不完整的统计图表:组别分数段频数频率A61≤x<71abB71≤x<81241.4C81≤x<9118cD91≤x<111121.2请根据上述统计图表,解答下列问题:(1)共抽取了多少名学生进行问卷测试?(2)补全频数分布直方图;(3)如果测试成绩不低于81分者为“优秀”,请你估计全校2111名学生中,“优秀”等次的学生约有多少人?22.(8分)如图,将的边延长至点,使,连接,,,交于点.(1)求证:;(2)若,求证:四边形是矩形.23.(8分)如图,菱形ABCD中,AB=1,∠A=60°,EFGH是矩形,矩形的顶点都在菱形的边上.设AE=AH=x(0<x<1),矩形的面积为S.(1)求S关于x的函数解析式;(2)当EFGH是正方形时,求S的值.24.(8分)已知:如图,平行四边形ABCD中,M、N分别为AB和CD的中点.(1)求证:四边形AMCN是平行四边形;(2)若AC=BC=5,AB=6,求四边形AMCN的面积.25.(10分)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.26.(10分)某内陆城市为了落实国家“一带一路”战略,促进经济发展,增强对外贸易的竞争力,把距离港口420km的普通公路升级成了同等长度的高速公路,结果汽车行驶的平均速度比原来提高了50%,行驶时间缩短了2h,求汽车原来的平均速度.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】由题意得,x﹣1≠0,解得x≠1.故选D.2、C【解题分析】
直接利用分式的值为零则分子为零,分母不为零,进而得出答案.【题目详解】解:∵分式x2∴x2−1=0且x2+x−2≠0,解得:x=−1.故选:C.【题目点拨】此题主要考查了分式的值为零的条件,正确解方程是解题关键.3、C【解题分析】
根据平行线四边形的判定方法对A进行判定;根据矩形的判定方法,对角线相等的平行四边形是矩形,则可对B进行判定;根据菱形的判定方法,对角线互相垂直的平行四边形是菱形,则可对C进行判定;根据正方形的判定方法,对角线互相垂直的矩形是正方形,则可对对D进行判定.【题目详解】解:A、对角线互相平分的四边形是平行四边形,所以A选项为真命题;B、对角线相等的平行四边形是矩形,所以B选项为假命题;C、对角线互相垂直的平行四边形是菱形,所以C选项为假命题;D、对角线互相垂直的矩形是正方形,所以D选项为假命题.故选A.【题目点拨】本题考查了命题与定理:判断一件事情的语句,叫做命题命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.4、D【解题分析】
根据被开方数是非负数列式求解即可.【题目详解】由题意得1-3a≥0,∴.故选D.【题目点拨】本题考查了二次根式的定义,形如的式子叫二次根式,熟练掌握二次根式成立的条件是解答本题的关键.5、C【解题分析】
根据勾股定理的逆定理,只需验证两较小边的平方和是否等于最长边的平方即可.【题目详解】A.3+4=25=5,故能构成直角三角形,故本选项错误;B.1+1=2=(),故能构成直角三角形,故本选项错误;C.2+3=13≠4,故不能构成直角三角形,故本选项正确;D.6+8=100=10,故能构成直角三角形,故本选项错误。故选C.【题目点拨】此题考查勾股定理的逆定理,解题关键在于掌握其定义6、B【解题分析】
连接OB、OC,如图,利用等边三角形的性质得∠ABO=∠OBC=∠0CB=30°,再证明∠BOD=∠COE,于是可判断△BOD≌△COE,所以BD=CE,OD=OE,则可对①进行判断;利用得到四边形ODBE的面积,则可对进行③判断;作OH⊥DE,如图,则DH=EH,计算出=,利用面积随OE的变化而变化和四边形ODBE的面积为定值可对②进行判断;由于△BDE的周长=BC+DE=4+DE=4+OE,根据垂线段最短,当OE⊥BC时,OE最小,△BDE的周长最小,计算出此时OE的长则可对④进行判断.【题目详解】解:连接OB、OC,如图,∵△ABC为等边三角形,∴∠ABC=∠ACB=60°,∵点0是△ABC的中心,∴OB=OC,OB、OC分别平分∠ABC和∠ACB,∴∠ABO=∠0BC=∠OCB=30°∴∠BOC=120°,即∠BOE+∠COE=120°,而∠DOE=120°,即∠BOE+∠BOD=120°,∴∠BOD=∠COE,在△BOD和△COE中∴△BOD2≌△COE,∴BD=CE,OD=OE,所以①正确;∴,∴四边形ODBE的面积,所以③错误;作OH⊥DE,如图,则DH=EH,∵∠DOE=120°,∴∠ODE=∠OEH=30°,即S△ODE随OE的变化而变化,而四边形ODBE的面积为定值,所以②错误;∵BD=CE,∴△BDE的周长=BD+BE+DE=CE+BE+DE=BC+DE=4+DE=6+OE,当OE⊥BC时,OE最小,△BDE的周长最小,此时OE=,.△BDE周长的最小值=6+3=9,所以④正确.故选:B.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等边三角形的性质和全等三角形的判定与性质.7、B【解题分析】
首先根据勾股定理计算出AC的长,进而得到AD的长,再根据A点表示0,可得D点表示的数.【题目详解】解:AC=则AD=5
∵A点表示0,
∴D点表示的数为:-5
故选:B.【题目点拨】此题主要考查了勾股定理的应用,关键是掌握勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.同时考查了实数与数轴.8、C【解题分析】
写出各个定理的逆命题,判断是否正确即可.【题目详解】解:两直线平行,同位角相等的逆命题是同位角相等,两直线平行,正确,A有逆定理;全等三角形的对应边相等的逆命题是对应边相等的两个三角形全等,正确,B有逆定理;全等三角形的对应角相等的逆命题是对应角相等的两个三角形全等,错误,C没有逆定理;在角的内部,到角的两边距离相等的点在角的平分线上的逆命题是角的平分线上的点到角的两边距离相等,正确,D有逆定理;故选:C.【题目点拨】本题考查的是命题与定理,属于基础知识点,比较简单.9、D【解题分析】
连结PP′,如图,先根据旋转的性质得BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,则可判断△PBP′为等腰直角三角形,于是有∠BPP′=45°,PP′=PB=2,然后根据勾股定理的逆定理证明△APP′为直角三角形,得到∠APP′=90°,所以∠BPA=∠BPP′+∠APP′=135°,则∠BP′C=135°.【题目详解】解:连结PP′,如图,∵四边形ABCD为正方形,∴∠ABC=90°,BA=BC,∴△ABP绕点B顺时针旋转90°得到△CBP′,∴BP=BP′,∠BAP=∠BP′C,∠PBP′=90°,∴△PBP′为等腰直角三角形,∴∠BPP′=45°,PP′=PB=2,在△APP′中,∵PA=1,PP′=2,AP′=3,∴PA2+PP′2=AP′2,∴△APP′为直角三角形,∠APP′=90°,∴∠BPA=∠BPP′+∠APP′=45°+90°=135°,∴∠BP′C=135°.故选D.【题目点拨】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了等腰直角三角形的判定与性质和勾股定理的逆定理.10、A【解题分析】试题分析:连接OP,∵矩形的两条边AB、BC的长分别为6和1,∴S矩形ABCD=AB•BC=41,OA=OC,OB=OD,AC=BD=10,∴OA=OD=5,∴S△ACD=S矩形ABCD=24,∴S△AOD=S△ACD=12,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×5×PE+×5×PF=(PE+PF)=12,解得:PE+PF=4.1.故选A.考点:矩形的性质;和差倍分;定值问题.二、填空题(每小题3分,共24分)11、5【解题分析】
由四边形ABCD为正方形可以得到∠D=∠B=90°,AD=AB,又∠ABE=∠D=90°,而∠EAF=90°由此可以推出∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,进一步得到∠DAF=∠BAE,所以可以证明△AEB≌△AFD,所以S=S,那么它们都加上四边形ABCF的面积,即可四边形AECF的面积=正方形的面积,从而求出其面积.【题目详解】∵四边形ABCD为正方形,∴∠D=∠ABC=90°,AD=AB,∴∠ABE=∠D=90°,∵∠EAF=90°,∴∠DAF+∠BAF=90°,∠BAE+∠BAF=90°,∴∠DAF=∠BAE,∴△AEB≌△AFD(ASA),∴S=S,∴它们都加上四边形ABCF的面积,可得到四边形AECF的面积=正方形的面积=5.故答案为:5.【题目点拨】此题考查全等三角形的判定与性质,正方形的性质,解题关键在于掌握判定定理.12、【解题分析】试题解析:0.00000002=2×10-8.点睛:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.13、8或1【解题分析】
解:如图所示:①当AE=1,DE=2时,∵四边形ABCD是平行四边形,∴BC=AD=3,AB=CD,AD∥BC,∴∠AEB=∠CBE,∵BE平分∠ABC,∴∠ABE=∠CBE,∴∠ABE=∠AEB,∴AB=AE=1,∴平行四边形ABCD的周长=2(AB+AD)=8;②当AE=2,DE=1时,同理得:AB=AE=2,∴平行四边形ABCD的周长=2(AB+AD)=1;故答案为8或1.14、-1【解题分析】
根据点A在正比例函数y=mx上,进而计算m的值,再根据y的值随x值的增大而减小,来确定m的值.【题目详解】解∵正比例函数y=mx的图象经过点A(m,4),∴4=m1.∴m=±1∵y的值随x值的增大而减小∴m=﹣1故答案为﹣1【题目点拨】本题只要考查正比例函数的性质,关键在于根据函数的y的值随x值的增大而减小,来判断m的值.15、1.【解题分析】
过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.可得四边形ACFD是平行四边形,根据平行四边形的性质可得AD=CF,再判定△BDF是等腰直角三角形,根据等腰直角三角形的性质求出AH=BF解答.【题目详解】如图,过点D作DF∥AC交BC的延长线于F,作DE⊥BC于E.则四边形ACFD是平行四边形,∴AD=CF,∴AD+BC=BF,∵梯形ABCD的中位线长是1,∴BF=AD+BC=1×2=10.∵AC=BD,AC⊥BD,∴△BDF是等腰直角三角形,∴AH=DE=BF=1,故答案为:1.【题目点拨】本题考查了梯形的中位线,等腰直角三角形的判定与性质,平行四边形的判定与性质,梯形的问题关键在于准确作出辅助线.16、(3x+1)2【解题分析】
原式利用完全平方公式分解即可.【题目详解】解:原式=(3x+1)2,故答案为:(3x+1)2【题目点拨】此题考查了因式分解−运用公式法,熟练掌握完全平方公式是解本题的关键.17、0.1【解题分析】
概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率.【题目详解】解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,∴这种苹果幼树移植成活率的概率约为0.1,故答案为:0.1.【题目点拨】此题主要考查了利用频率估计概率,大量反复试验下频率稳定值即概率.用到的知识点为:频率=所求情况数与总情况数之比.18、【解题分析】
根据平行四边形的性质可得AB=10,BC=AD=6,由BC⊥AC,根据勾股定理求得AC的长,即可求得OA长,再由勾股定理求得OB的长,即可求得BD的长.【题目详解】∵四边形ABCD是平行四边形,∴BC=AD=6,OB=OD,OA=OC,∵AC⊥BC,∴AC==8,∴OC=4,∴OB==2,∴BD=2OB=4故答案为:4.【题目点拨】本题考查了平行四边形的性质以及勾股定理,熟练运用平行四边形的性质及勾股定理是解决本题的关键.三、解答题(共66分)19、(1)甲每小时加工零件50个,乙每小时加工零件40个(2)乙至少加工8天才能加工完这批零件.【解题分析】
(1)根据“甲加工150个零件所用的时间与乙加工120个零件所用的时间相等”可得出相等关系,从而只需不是出™各自的时间就可以了;(2)根据题目条件列出不等式求出加工天数.【题目详解】解:(1)设乙每小时加工零件个,则甲每小时加工零件个由题可得:解得:经检验是原方程的解,则答:甲每小时加工零件50个,乙每小时加工零件40个.(2)设乙至少加工天才能加工完这批零件,则解之得:答:乙至少加工8天才能加工完这批零件.【题目点拨】本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.20、1.【解题分析】
根据二次根式的加减法、乘除法法则求出x+y、xy,根据完全平方公式把原式变形,代入计算即可.【题目详解】解:∵x=-1,y=+1,∴x+y=2,xy=4,∴x2+xy+y2=(x+y)2-xy=20-4=1.【题目点拨】此题考查了代数式求值的问题,解题的关键是把所求的代数式用完全平方公式进行变形.21、(1)61(名);(2)见解析;(3)估计全校2111名学生中,“优秀”等次的学生约有1111人.【解题分析】
(1)利用频数÷频率=总人数,即可解答.(2)A组频数61-(24+18+12)=6,补全见答案;(3)先求出不低于81分者为“优秀”的百分比,再利用总人数乘以“优秀”等次的学生数的百分比,即可解答.【题目详解】解:(1)24÷1.4=61(名)答:共抽取了61名学生进行问卷测试;(2)A组频数61-(24+18+12)=6,补全如下(3)2111×=1111(人)答:估计全校2111名学生中,“优秀”等次的学生约有1111人.【题目点拨】此题考查条形统计图和统计表.读懂统计图,从不同的统计图中得到必要的信息是解题的关键.条形统计图能清楚地表示出每个项目的数据.22、(1)详见解析;(2)详见解析.【解题分析】
(1)由平行四边形的性质可得,,可得,由“”可证;(2)由一组对边平行且相等可证四边形是平行四边形,由对角线相等的平行四边形是矩形可证平行四边形是矩形.【题目详解】(1)∵四边形是平行四边形∴∴又∵∴(2)∵,∴∴四边形是平行四边形,∴AE=2AO,BC=2BO,又∵,∴∴∴∴是矩形【题目点拨】本题考查了矩形的判定,全等三角形的判定和性质,平行四边形的性质,灵活运用这些性质进行推理是本题的关键.23、(1)矩形EFGH的面积为S=-x2+x(0<x<1);(2)S=.【解题分析】
(1)连接BD交EF于点M,根据菱形的性质得出AB=AD,BD⊥EF,求出△AEH是等边三角形,根据等边三角形的性质得出∠AEH=∠ABD=60°,∠BEM=30°,BE=2BM,求出EM=BE,即可求出答案;(2)根据正方形的性质求出x,再求出面积即可.【题目详解】(1)连接BD交EF于点M,∵四边形ABCD是菱形,∴AB=AD,∵AE=AH,∴EH∥BD∥FG,BD⊥EF,∵在菱形ABCD中,∠A=60°,AE=AH,∴△AEH是等边三角形,∴∠
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 佣金贸易合同范本
- 儿童帽企业ESG实践与创新战略研究报告
- 壁橱企业ESG实践与创新战略研究报告
- 账户租用合同范本
- 铅矿尾矿再开发利用企业数字化转型与智慧升级战略研究报告
- 牛仔面料企业ESG实践与创新战略研究报告
- 科技创新中的网络安全风险评估
- 床企业数字化转型与智慧升级战略研究报告
- 釉底料(泥釉)企业县域市场拓展与下沉战略研究报告
- 电子商务中的品牌塑造与传播策略
- 历届 最近十年 (新知杯)上海市初中数学竞赛试卷及答案(含模拟试题及解答)
- 舱门操作(空客系列飞机)
- 台湾长庚文化村
- 药理学免疫器官和组织
- 礼仪与沟通完整版
- 2023年超龄员工承诺书 60岁以上员工承诺书(八篇)
- 001 比较思想政治教育(第二版) 第一章
- 股骨粗隆间骨折PPT
- 供应商年度评审记录表
- 饮用水源地保护区环境整治工程项目可行性论证报告建议书
- 第五部分茶艺馆的经营与管理
评论
0/150
提交评论