湖北恩施市龙凤镇民族初级中学2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第1页
湖北恩施市龙凤镇民族初级中学2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第2页
湖北恩施市龙凤镇民族初级中学2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第3页
湖北恩施市龙凤镇民族初级中学2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第4页
湖北恩施市龙凤镇民族初级中学2024届八年级数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北恩施市龙凤镇民族初级中学2024届八年级数学第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.在下列图形中,一定是中心对称图形,但不一定是轴对称图形的为()A.正五边形B.正六边形C.等腰梯形D.平行四边形2.已知等腰三角形的周长是10,底边长y是腰长x的函数,则下列图象中,能正确反映y与x之间函数关系的图象是()A. B. C.D3.估算的运算结果应在()A.3到4之间 B.4到5之间 C.5到6之间 D.6到7之间4.如图,已知,添加下列条件后,仍不能判定的是()A. B.C. D.5.正方形具有而菱形不一定具有的性质是()A.四边相等 B.对角线相等 C.对角线互相垂直 D.对角线互相平分6.如图,将长方形纸片ABCD折叠,使点B与点D重合,折痕为EF,已知AB=6cm,BC=18cm,则Rt△CDF的面积是()A.27cm2 B.24cm2 C.22cm2 D.20cm27.下列各曲线中不能表示y是x的函数是()8.如图,在▱ABCD中,AB=8,BC=5,以点A为圆心,以任意长为半径作弧,分别交AD、AB于点P、Q,再分别以P、Q为圆心,以大于PQ的长为半径作弧,两弧在∠DAB内交于点M,连接AM并延长交CD于点E,则CE的长为()A.3 B.5 C.2 D.6.59.函数中自变量x的取值范围是()A.≥-3 B.≥-3且 C. D.且10.五边形的内角和是()A.180° B.360° C.540° D.720°二、填空题(每小题3分,共24分)11.不等式的正整数解的和______;12.对分式和进行通分,它们的最简公分母是________.13.已知不等式组的解集如图所示(原点没标出,数轴长度为1,黑点和圆圈均在整数的位置),则a的值为______.14.在正方形ABCD中,对角线AC、BD相交于点O.如果AC=,那么正方形ABCD的面积是__________.15.若x+y﹣1=0,则x2+xy+y2﹣2=_____.16.将直线向上平移个单位后,可得到直线_______.17.如图,△ABC中,D,E分别为AB,AC的中点,∠B=70°,则∠ADE=度.18.如图,正方形的边长为5,,连结,则线段的长为________.三、解答题(共66分)19.(10分)小明骑单车上学,当他骑了一段路时起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校以下是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:(1)小明家到学校的路程是米,本次上学途中,小明一共行驶了米;(2)小明在书店停留了分钟,本次上学,小明一共用了分钟;(3)在整个上学的途中那个时间段小明骑车速度最快,最快的速度是多少?20.(6分)某文具店准备购进A、B两种型号的书包共50个进行销售,两种书包的进价、售价如下表所示:书包型号进价(元/个)售价(元/个)A型200300B型100150购进这50个书包的总费用不超过7300元,且购进B型书包的个数不大于A型书包个数的.(1)该文具店有哪几种进货方案?(2)若该文具店购进的50个书包全部售完,则该文具店采用哪种进货方案,才能获得最大利润?最大利润是多少?(利润=售价﹣进价)21.(6分)点D是等边三角形ABC外一点,且DB=DC,∠BDC=120°,将一个三角尺60°角的顶点放在点D上,三角尺的两边DP,DQ分别与射线AB,CA相交于E,F两点.(1)当EF∥BC时,如图①所示,求证:EF=BE+CF.(2)当三角尺绕点D旋转到如图②所示的位置时,线段EF,BE,CF之间的上述数量关系是否成立?如果成立,请说明理由;如果不成立,写出EF,BE,CF之间的数量关系,并说明理由.(3)当三角尺绕点D继续旋转到如图③所示的位置时,(1)中的结论是否发生变化?如果不变化,直接写出结论;如果变化,请直接写出EF,BE,CF之间的数量关系.22.(8分)如图,▱ABCD中E,F分别是AD,BC中点,AF与BE交于点G,CE和DF交于点H,求证:四边形EGFH是平行四边形.23.(8分)某厂为了检验甲、乙两车间生产的同一款新产品的合格情况(尺寸范围为~的产品为合格〉.随机各抽取了20个祥品迸行检测.过程如下:收集数据(单位:):甲车间:168,175,180,185,172,189,185,182,185,174,192,180,185,178,173,185,169,187,176,180.乙车间:186,180,189,183,176,173,178,167,180,175,178,182,180,179,185,180,184,182,180,183.整理数据:组别频数165.5~170.5170.5~175.5175.5~180.5180.5~185.5185.5~190.5190.5~195.5甲车间245621乙车间1220分析数据:车间平均数众数中位数方差甲车1乙车6应用数据;(1)计算甲车间样品的合格率.(2)估计乙车间生产的1000个该款新产品中合格产品有多少个?(3)结合上述数据信息.请判断哪个车间生产的新产品更好.并说明理由.24.(8分)已知函数,(1)当m取何值时抛物线开口向上?(2)当m为何值时函数图像与x轴有两个交点?(3)当m为何值时函数图像与x轴只有一个交点?25.(10分)先化简,再求值:),其中.26.(10分)如图,AC是正方形ABCD的对角线,点O是AC的中点,点Q是AB上一点,连接CQ,DP⊥CQ于点E,交BC于点P,连接OP,OQ;求证:(1)△BCQ≌△CDP;(2)OP=OQ.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】A.正五边形是轴对称图形,但不是中心对称图形,故A错;B.正六边形既是轴对称图形,又是中心对称图形,故B错;C.等腰梯形是轴对称图形,但不是中心对称图形,故C错;D.平行四边形是中心对称图形,但不是轴对称图形,故D正确;故选D.2、D【解题分析】

先根据三角形的周长公式求出函数关系式,再根据三角形的任意两边之和大于第三边,三角形的任意两边之差小于第三边求出x的取值范围,然后选择即可.【题目详解】由题意得,2x+y=10,所以,y=-2x+10,由三角形的三边关系得,,解不等式①得,x>2.5,解不等式②的,x<5,所以,不等式组的解集是2.5<x<5,正确反映y与x之间函数关系的图象是D选项图象.故选:D.3、C【解题分析】

先估算出的大小,然后求得的大小即可.【题目详解】解:9<15<16,3<<4,5<<6,故选C.【题目点拨】本题考查了估算无理数的大小:利用完全平方数和算术平方根对无理数的大小进行估算.4、C【解题分析】

根据全等三角形的判定方法逐项判断即可.【题目详解】解:在△ABC和△ADC中,已知,AC=AC,A、添加后,可根据SSS判定,所以本选项不符合题意;B、添加后,可根据SAS判定,所以本选项不符合题意;C、添加后,不能判定,所以本选项符合题意;D、添加后,可根据HL判定,所以本选项不符合题意.故选:C.【题目点拨】本题考查了全等三角形的判定,属于基本题型,熟练掌握全等三角形的判定方法是解题关键.5、B【解题分析】

观察四个选项,分别涉及了四条边和对角线,我们应对照正方形和菱形边及对角线的性质,找出不同即可.【题目详解】正方形和菱形的四条边均相等,每条对角线均平分一组对角,正方形两条对角线相等且互相垂直平分,菱形对角线互相垂直且平分,但不相等.故选B.【题目点拨】本题考查了正方形和菱形性质的知识,解决本题的关键是熟练掌握正方形和菱形的性质.6、B【解题分析】

求Rt△CDF的面积,CD边是直角边,有CD=AB=6cm,只要求出边FC即可.由于点B与点D重合,所以有FD=BF=BC-FC=18-FC,利用勾股定理可求出FC了.【题目详解】解:设FC=x,Rt△CDF中,CD=6cm,FC=x,又折痕为EF,

∴FD=BF=BC-FC=18-FC=18-x,

Rt△CDF中,DF2=FC2+CD2,

即(18-x)2=x2+62,

解得x=8,

∴面积为故选:B.【题目点拨】解决本题的关键是根据折叠及矩形的性质利用勾股定理求得CF的长度;易错点是得到DF与CF的长度和为18的关系.7、B【解题分析】A、能表示y是x的函数,故本选项不符合题意;B、能表示y是x的函数,故本选项不符合题意;C、不能表示y是x的函数,故本选项符合题意;D、能表示y是x的函数,故本选项不符合题意.故选C.8、A【解题分析】

根据作图过程可得得AE平分∠DAB;再根据角平分线的性质和平行四边形的性质可证明∠DAE=∠DEA,证出AD=DE=5,即可得出CE的长.【题目详解】解:根据作图的方法得:AE平分∠DAB,∴∠DAE=∠EAB,∵四边形ABCD是平行四边形,∴DC∥AB,AD=BC=5,∴∠DEA=∠EAB,∴∠DAE=∠DEA,∴AD=DE=5,∴CE=DC-DE=8-5=3;故选A.【题目点拨】此题考查了平行四边形的性质、等腰三角形的判定.熟练掌握平行四边形的性质,证出AD=DE是解决问题的关键.9、B【解题分析】分析:本题主要考查自变量的取值范围,函数关系中主要有二次根式和分式两部分.根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,就可以求解.解答:解:∵≥0,∴x+3≥0,∴x≥-3,∵x-1≠0,∴x≠1,∴自变量x的取值范围是:x≥-3且x≠1.故选B.10、C【解题分析】

根据n边形的内角和为:,且n为整数,求出五边形的内角和是多少度即可.【题目详解】解:五边形的内角和是:(5﹣2)×180°=3×180°=540°故选:C.【题目点拨】此题主要考查了多边形的内角和定理,要熟练掌握,解答此题的关键是要明确n边形的内角和为:,且n为整数.二、填空题(每小题3分,共24分)11、3.【解题分析】

先解出一元一次不等式,然后选取正整数解,再求和即可.【题目详解】解:解得;x<3,;则正整数解有2和1;所以正整数解的和为3;故答案为3.【题目点拨】本题考查了解一元一次不等式组和正整数的概念,其关键在于选取正整数解.12、【解题分析】

根据确定最简公分母的方法是:(1)取各分母系数的最小公倍数;(2)凡单独出现的字母连同它的指数作为最简公分母的一个因式;(3)同底数幂取次数最高的,得到的因式的积就是最简公分母即可得出答案.【题目详解】解:分式和的最简公分母是,故答案为:.【题目点拨】本题考查了最简公分母的定义:通常取各分母系数的最小公倍数与字母因式的最高次幂的积作公分母,这样的公分母叫做最简公分母.通分的关键是准确求出各个分式中分母的最简公分母,确定最简公分母的方法一定要掌握.13、2【解题分析】

先解出关于x的不等式,由数轴上表示的解集求出的范围即可.【题目详解】解:,不等式组整理得:,由数轴得:,可得,解得:,故答案为2【题目点拨】此题考查了一元一次不等式组的整数解,以及在数轴上表示不等式的解集,熟练掌握运算法则是解本题的关键.14、1【解题分析】

根据正方形的对角线将正方形分为两个全等的等腰直角三角形,AC是该三角形的斜边,由此根据三角形面积的计算公式得到正方形的面积.【题目详解】正方形ABCD的一条对角线将正方形分为两个全等的等腰直角三角形,即AC是等腰直角三角形的斜边,∵AC=∴正方形ABCD的面积两个直角三角形的面积和,∴正方形ABCD的面积=,故答案为:1.【题目点拨】此题考查正方形的性质,等腰直角三角形的性质,正确掌握正方形的性质是解题的关键.15、【解题分析】将变形为,然后把已知条件变形后代入进行计算即可.解:原式=,把x+y-1变形为x+y=1代入,得原式=.“点睛”本题考查了代数式求值,正确的进行代数式的变形是解题的关键.16、【解题分析】

根据“上加下减”原则进行解答即可.【题目详解】由“上加下减”原则可知,将直线向上平移个单位,得到直线的解析式为:,即故答案为:【题目点拨】本题考查一次函数平移问题,根据“上加下减”原则进行解答即可.17、1【解题分析】

由题意可知DE是三角形的中位线,所以DE∥BC,由平行线的性质即可求出∠ADE的度数.【题目详解】∵D,E分别为AB,AC的中点,∴DE是三角形的中位线,∴DE∥BC,∴∠ADE=∠B=1°,故答案为1.【题目点拨】本题考查了三角形中位线的性质以及平行线的性质.18、【解题分析】

延长BG交CH于点E,根据正方形的性质证明△ABG≌△CDH≌△BCE,可得GE=BE-BG=2、HE=CH-CE=2、∠HEG=90°,由勾股定理可得GH的长.【题目详解】解:如图,延长BG交CH于点E,

∵正方形的边长为5,,∴AG2+BG2=AB2,∴∠AGB=90°,在△ABG和△CDH中,∴△ABG≌△CDH(SSS),

∴∠1=∠5,∠2=∠6,∠AGB=∠CHD=90°,

∴∠1+∠2=90°,∠5+∠6=90°,

又∵∠2+∠3=90°,∠4+∠5=90°,

∴∠1=∠3=∠5,∠2=∠4=∠6,

在△ABG和△BCE中,∴△ABG≌△BCE(ASA),

∴BE=AG=4,CE=BG=3,∠BEC=∠AGB=90°,

∴GE=BE-BG=4-3=1,

同理可得HE=1,

在RT△GHE中,故答案为:【题目点拨】本题主要考查正方形的性质、全等三角形的判定与性质、勾股定理及其逆定理的综合运用,通过证三角形全等得出△GHE为等腰直角三角形是解题的关键.三、解答题(共66分)19、(1)1500,2700;(2)4,1;(3)在整个上学的途中从12分钟到1分钟小明骑车速度最快,最快的速度是450米/分.【解题分析】

(1)因为轴表示路程,起点是家,终点是学校,故小明家到学校的路程是1500米;共行驶的路程小明家到学校的距离折回书店的路程.(2)与轴平行的线段表示路程没有变化,观察图象分析其对应时间即可.(3)观察图象分析每一时段所行路程,然后计算出各时段的速度进行比较即可.【题目详解】解:(1)轴表示路程,起点是家,终点是学校,小明家到学校的路程是1500米.(米即:本次上学途中,小明一共行驶了2700米.(2)由图象可知:小明在书店停留了4分钟.本次上学,小明一共用了1分钟;(3)折回之前的速度(米分),折回书店时的速度(米分),从书店到学校的速度(米分),经过比较可知:小明在从书店到学校的时候速度最快,即:在整个上学的途中从12分钟到1分钟小明骑车速度最快,最快的速度是450米分.故答案是:(1)1500,2700;(2)4,1.【题目点拨】本题考查了函数的图象及其应用,解题的关键是理解函数图象中轴、轴表示的量及图象上点的坐标的意义.20、(1)有4种进货方案,分别是:①A,20个,B,30个;②A,21个,B,29个;③A,22个,B28个;④A,1个,B27个;(2)购进A型1个,B型27个获利最大,最大利润为3元.【解题分析】

(1)设购进A型书包x个,则B型(50﹣x)个,由题意得关于x的不等式组,解得x的范围,再根据x为正整数,可得x及(50﹣x)的值,则进货方案可得.(2)设获利y元,根据利润等于(A的售价﹣进价)×A的购进数量+(B的售价﹣进价)×B的购进数量,列出函数关系式,根据一次函数的性质可得答案.【题目详解】解:(1)设购进A型书包x个,则B型(50﹣x)个,由题意得:,解得:20≤x≤1.∴A型书包可以购进20,21,22,1个;B型书包可以购进(50﹣x)个,即30,29,28,27个.答:有4种进货方案,分别是:①A,20个,B,30个;②A,21个,B,29个;③A,22个,B28个;④A,1个,B27个.(2)设获利y元,由题意得:y=(300﹣200)x+(150﹣100)(50﹣x)=100x+50(50﹣x)=50x+2.∵50>0,∴y随x的增大而增大.∴当x=1时,y最大,y最大值=50×1+2=3.答:购进A型1个,B型27个获利最大,最大利润为3元.【题目点拨】本题考查了一次函数实际应用问题的方案设计和选择问题,根据题意列出相关的不等式,利用一次函数性质选取最佳方案即可.21、(1)见解析;(2)结论仍然成立.理由见解析;(3)结论发生变化.EF=CF-BE.【解题分析】

(1)根据△ABC是等边三角形知道AB=AC,∠ABC=∠ACB=60°,而DB=DC,∠BDC=120°,这样可以得到△DCF和△BED是直角三角形,由于EF∥BC,可以证明△AEF是等边三角形,也可以证明△BDE≌△CDF,可以得到DE=DF,由此进一步得到

DE=DF∠BDE=∠CDF=30°,这样可以得到BE=DE=DF=CF,而△DEF是等边三角形,所以题目的结论就可以证明出来了;(2)结论仍然成立.如图,在AB的延长线上取点F’,使BF’=CF,连接DF’,根据(1)的结论可以证明△DCF≌△DBF’,根据全等三角形的性质可以得到DF=DF’,∠BDF’=∠CDF,又∠BDC=120°,∠EDF=60°,可以得到:∠EDF’=∠CDF=60°,由此可以证明△EDF’≌△EDF,从而证明题目的结论;(3)结论发生变化.EF=BE-CF.如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得△DCF≌△DBF′(SAS).根据全等三角形的性质可以得到DF=DF′,∠BDF′=∠CDF.又因为∠BDC=120°,∠EDF=60°,可以得到∠FDB+∠CDF=60°,∠FDB+∠BDF′=∠FDF′=120°,所以∠EDF′=∠EDF=60°,由此可得△EDF′≌△EDF(SAS),从而证明题目的结论EF=EF′=BF′-BE=CF-BE。【题目详解】(1)证明:∵△ABC是等边三角形,∴AB=AC,∠ABC=∠ACB=60°.∵DB=DC,∠BDC=120°,∴∠DBC=∠DCB=30°.∴∠DBE=∠DBC+∠ABC=90°,∠DCF=∠DCB+∠ACB=90°.∵EF∥BC,∴∠AEF=∠ABC=60°,∠AFE=∠ACB=60°.∴AE=AF.∴BE=AB-AE=AC-AF=CF.又∵DB=DC,∠DBE=∠DCF=90°,∴△BDE≌△CDF.∴DE=DF,∠BDE=∠CDF=(120°-60°)=30°.∴BE=DE=DF=CF.∵∠EDF=60°,∴△DEF是等边三角形,即DE=DF=EF.∴BE+CF=DE+DF=EF,即EF=BE+CF.(2)解:结论仍然成立.理由如下:如图,在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得∠DBE=∠DCF=90°,则∠DBF′=∠DCF=90°.又∵BD=CD,∴△DCF≌△DBF′(SAS).∴DF=DF′,∠BDF′=∠CDF.又∵∠BDC=120°,∠EDF=60°,∴∠EDB+∠CDF=60°.∴∠EDB+∠BDF′=∠EDF′=60°.∴∠EDF′=∠EDF.又∵DE=DE,∴△EDF′≌△EDF(SAS).∴EF=EF′=BE+BF′=BE+CF.(3)解:结论发生变化.EF=CF-BE.理由:在射线AB上取点F′,使BF′=CF,连接DF′.由(1)得∠DBA=∠DCF=90°,则∠DBF′=∠DCF=90°.又∵BD=CD,∴△DCF≌△DBF′(SAS).∴DF=DF′,∠BDF′=∠CDF.又∵∠BDC=120°,∠EDF=60°,∴∠FDB+∠CDF=60°.∴∠FDB+∠BDF′=∠FDF′=120°.∴∠EDF′=∠EDF=60°.又∵DE=DE,DF=DF′,∴△EDF′≌△EDF(SAS).∴EF=EF′=BF′-BE=CF-BE。【题目点拨】此题考查等边三角形的性质及全等三角形的判定及性质;利用等边三角形的性质去探究全等三角形,利用全等三角形的性质解决题目的图形变换规律是非常重要的,要注意掌握.22、证明见解析【解题分析】

可分别证明四边形AFCE是平行四边形,四边形BFDE是平行四边形,从而得出GF∥EH,GE∥FH,即可证明四边形EGFH是平行四边形.【题目详解】证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC.∵AE=12AD,FC=12∴AE∥FC,AE=FC.∴四边形AECF是平行四边形.∴GF∥EH.同理可证:ED∥BF且ED=BF.∴四边形BFDE是平行四边形.∴GE∥FH.∴四边形EGFH是平行四边形.【题目点拨】考查了平行四边形的判定与性质.平行四边形的判定方法共有五种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.23、(1)甲车间样品的合格率为(2)乙车间的合格产品数为个;(3)乙车间生产的新产品更好,理由见解析.【解题分析】分析:(1)根据甲车间样品尺寸范围为176mm~185mm的产品的频数即可得到结论;(2)用总数20减去乙车间

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论