江苏省江阴初级中学2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第1页
江苏省江阴初级中学2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第2页
江苏省江阴初级中学2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第3页
江苏省江阴初级中学2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第4页
江苏省江阴初级中学2024届八年级数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省江阴初级中学2024届八年级数学第二学期期末学业质量监测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.已知图中所有的小正方形都全等,若在右图中再添加一个全等的小正方形得到新的图形,使新图形是中心对称图形,则正确的添加方案是()A. B. C. D.2.如图,△ABC中,D、E分别是AB、AC上点,DE∥BC,AD=2,DB=1,AE=3,则EC长()A. B.1 C. D.63.如图,已知△ABC的周长为20cm,现将△ABC沿AB方向平移2cm至△A′B′C′的位置,连结CC′.则四边形AB′C′C的周长是()A.18cm B.20cm C.22cm D.24cm4.已知点A的坐标为(3,﹣6),则点A所在的象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限5.如图,正方形ABCD的边长为2cm,动点P从点A出发,在正方形的边上沿A→B→C的方向运动到点C停止,设点P的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A. B. C. D.6.如果三个数a、b、c的中位数与众数都是5,平均数是4,那么b的值为()A.2 B.4 C.5 D.5或27.已知是关于的方程的两个实数根,且满足,则的值为()A.3 B.3或 C.2 D.0或28.下列二次根式中是最简二次根式的是()A. B. C. D.9.点P(﹣1,2)关于y轴对称的点的坐标是()A.(1,2) B.(﹣1,2) C.(1,﹣2) D.(﹣1,﹣2)10.如图,把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,若直线DF垂直平分AB,垂足为点E,连接BF,CE,且BC=2,下面四个结论:①BF=;②∠CBF=45°;③△BEC的面积=△FBC的面积;④△ECD的面积为,其中正确的结论有()A.1个 B.2个 C.3个 D.4个二、填空题(每小题3分,共24分)11.分解因式:__________.12.已知函数关系式:,则自变量x的取值范围是▲.13.若直线y=kx+b与直线y=2x平行,且与y轴相交于点(0,–3),则直线的函数表达式是__________.14.一组数据2,3,x,5,7的平均数是4,则这组数据的众数是.15.用科学记数法表示______.16.如图,平分,,,则______.17.八年级(3)班共有学生50人,如图是该班一次信息技术模拟测试成绩的频数分布直方图(满分为50分,成绩均为整数),若不低于30分为合格,则该班此次成绩达到合格的同学占全班人数的百分比是__________.18.在菱形ABCD中,∠A=30°,在同一平面内,以对角线BD为底边作顶角为120°的等腰三角形BDE,则∠EBC的度数为.三、解答题(共66分)19.(10分)平面直角坐标系xOy中,对于点M和图形W,若图形W上存在一点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称点M与图形W是“中心轴对称”的对于图形和图形,若图形和图形分别存在点M和点N(点M,N可以重合),使得点M与点N关于一条经过原点的直线l对称,则称图形和图形是“中心轴对称”的.特别地,对于点M和点N,若存在一条经过原点的直线l,使得点M与点N关于直线l对称,则称点M和点N是“中心轴对称”的.(1)如图1,在正方形ABCD中,点,点,①下列四个点,,,中,与点A是“中心轴对称”的是________;②点E在射线OB上,若点E与正方形ABCD是“中心轴对称”的,求点E的横坐标的取值范围;(2)四边形GHJK的四个顶点的坐标分别为,,,,一次函数图象与x轴交于点M,与y轴交于点N,若线段与四边形GHJK是“中心轴对称”的,直接写出b的取值范围.20.(6分)如图,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)在线段AB上找一点P,连结FP使FP⊥AC,连结PC,试判定四边形APCF的形状,并说明理由,直接写出此时线段PF的大小.21.(6分)如图,在∆ABC中,AB=AC,AD是BC边上的中线,BE⊥AC于点E.求证:∠CBE=∠BAD.22.(8分)阅读下列材料:关于x的方程:的解是,;即的解是;的解是,;的解是,;请观察上述方程与解的特征,比较关于x的方程与它们的关系,猜想它的解是什么?并利用“方程的解”的概念进行验证.由上述的观察、比较、猜想、验证,可以得出结论:如果方程的左边是未知数与其倒数的倍数的和,方程的右边的形式与左边完全相同,只是把其中的未知数换成了某个常数,那么这样的方程可以直接得解,请用这个结论解关于x的方程:.23.(8分)请把下列证明过程补充完整:已知:如图,DE∥BC,BE平分∠ABC.求证:∠1=∠1.证明:因为BE平分∠ABC(已知),所以∠1=______().又因为DE∥BC(已知),所以∠2=_____().所以∠1=∠1().24.(8分)省射击队为从甲、乙两名运动员中选拔一人参加全国比赛,对他们进行了六次测试,测试成绩如下表(单位:环):

第一次

第二次

第三次

第四次

第五次

第六次

10

8

9

8

10

9

10

7

10

10

9

8

(1)根据表格中的数据,计算出甲的平均成绩是环,乙的平均成绩是环;(2)分别计算甲、乙六次测试成绩的方差;(3)根据(1)、(2)计算的结果,你认为推荐谁参加全国比赛更合适,请说明理由.(计算方差的公式:s2=[])25.(10分)如图,一架长的梯子斜靠在一竖直的墙上,,这时.如果梯子的顶端沿墙下滑,那么梯子底端也外移吗?26.(10分)对于任意三个实数a,b,c,用min|a,b,c|表示这三个实数中最小数,例如:min|-2,0,1|=-2,则:(1)填空,min|(-2019)0,(-)-2,-|=______,如果min|3,5-x,3x+6|=3,则x的取值范围为______;(2)化简:÷(x+2+)并在(1)中x的取值范围内选取一个合适的整数代入求值.

参考答案一、选择题(每小题3分,共30分)1、B【解题分析】

观察图形,利用中心对称图形的性质解答即可.【题目详解】选项A,新图形不是中心对称图形,故此选项错误;选项B,新图形是中心对称图形,故此选项正确;选项C,新图形不是中心对称图形,故此选项错误;选项D,新图形不是中心对称图形,故此选项错误;故选B.【题目点拨】本题考查了中心对称图形的概念,熟知中心对称图形的概念是解决问题的关键.2、C【解题分析】试题解析:∵D、E分别是AB、AC上点,DE//BC,∴∵AD=2,DB=1,AE=3,∴故选C.3、D【解题分析】

根据平移的性质求出平移前后的对应线段和对应点所连的线段的长度,即可求出四边形的周长.【题目详解】解:由题意,平移前后A、B、C的对应点分别为A′、B′、C′,所以BC=B′C′,BB′=CC′,∴四边形AB′C′C的周长=CA+AB+BB′+B′C′+C′C=△ABC的周长+2BB′=20+4=24(cm),故选D.【题目点拨】本题考查的是平移的性质,主要运用的知识点是:经过平移,对应点所连的线段平行且相等,对应线段平行且相等.4、D【解题分析】

在平面直角坐标系中要判定一个点所在的象限,通常只需要判断点的横坐标和纵坐标的符号是正还是负就可以确定它所在的象限了.点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.【题目详解】横纵坐标同是正数在第一象限,横坐标负数纵坐标正数在第二象限,横纵坐标同是负数在第三象限,横坐标正数纵坐标负数在第四象限,点A的横坐标为正数,纵坐标为负数,所以点A在第四象限.【题目点拨】此题主要考查如何判断点所在的象限,熟练掌握每个象限内点的坐标的正负符号特征,即可轻松判断.5、B【解题分析】

△ADP的面积可分为两部分讨论,由A运动到B时,面积逐渐增大,由B运动到C时,面积不变,从而得出函数关系的图象.【题目详解】解:当P点由A运动到B点时,即0≤x≤2时,y=×2x=x,当P点由B运动到C点时,即2<x<4时,y=×2×2=2,符合题意的函数关系的图象是B;故选B.【题目点拨】本题考查了动点函数图象问题,用到的知识点是三角形的面积、一次函数,在图象中应注意自变量的取值范围.6、D【解题分析】

该数据的中位数与众数都是5,可以根据中位数、众数、平均数的定义,设出未知数列方程解答.【题目详解】解:设另一个数为x,则5+5+x=4×3,解得x=1,即b=5或1.故选D.【题目点拨】本题主要考查众数、中位数、平均数,用方程解答数据问题是一种重要的思想方法.平均数是数据之和再除以总个数;中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.7、A【解题分析】

根据根与系数的关系得出m+n=-(2b+3),mn=b2,变形后代入,求出b值,再根据根的判别式判断即可.【题目详解】解:∵m,n是关于x的方程x2+(2b+3)x+b2=0的两个实数根,

∴m+n=-(2b+3),mn=b2,

∵+1=-,

∴+=-1,

∴=-1,

∴=-1,

解得:b=3或-1,

当b=3时,方程为x2+9x+9=0,此方程有解;

当b=-1时,方程为x2+x+1=0,△=12-4×1×1=-3<0,此时方程无解,

所以b=3,

故选:A.【题目点拨】本题考查一元二次方程的解,根的判别式和根与系数的关系等知识点,能熟记根的判别式和根与系数的关系的内容是解此题的关键.8、A【解题分析】

根据最简二次根式的定义判断即可.【题目详解】A.是最简二次公式,故本选项正确;B.=不是最简二次根式,故本选项错误;C.=不是最简二次根式,故本选项错误;D.=不是最简二次根式,故本选项错误.故选A.【题目点拨】本题考查了最简二次根式,掌握最简二次根式的定义是解题的关键.9、A【解题分析】

解:根据关于y轴对称,横坐标互为相反数,纵坐标不变.故应选A考点:关于x轴、y轴对称的点的坐标10、C【解题分析】

根据旋转的性质得到△BCF为等腰直角三角形,故可判断①②,根据三角形的面积公式即可判断③,根据直线DF垂直平分AB可得EH是△ABC的中位线,各科求出EH的长,再根据三角形的面积公式求出△ECD的面积即可判断④.【题目详解】∵把Rt△ABC绕顶点C顺时针旋转90°得到Rt△DFC,∴CB=FC,∠BCF=90°,∴△BCF为等腰直角三角形,故∠CBF=45°,②正确;∵BC=2,∴FC=2,∴BF==,①正确;过点E作EH⊥BD,∵△BEC和△FBC的底都为BC,高分别为EH和FC,且EH≠FC,∴△BEC的面积≠△FBC的面积,③错误;∵直线DF垂直平分AB,∴AF=BF=,∴CD=AC=2+∵直线DF垂直平分AB,则E为AB中点,又AC⊥BC,EH⊥BC,∴EH是△ABC的中位线,∴EH=AC=1+,△ECD的面积为×CD×EH=,故④正确,故选C.【题目点拨】此题主要考查旋转的性质,解题的关键是熟知全等三角形的性质、垂直平分线的性质、三角形中位线的判定与性质.二、填空题(每小题3分,共24分)11、【解题分析】

先提取a,再根据平方差公式即可因式分解.【题目详解】故填:.【题目点拨】此题主要考查因式分解,解题的关键是熟知公式法与提取公因式法因式分解.12、【解题分析】求函数自变量的取值范围,就是求函数解析式有意义的条件,根据二次根式被开方数必须是非负数的条件,要使在实数范围内有意义,必须。13、y=2x–1【解题分析】

根据两条直线平行问题得到k=2,然后把点(0,-1)代入y=2x+b可求出b的值,从而可确定所求直线解析式.【题目详解】∵直线y=kx+b与直线y=2x平行,∴k=2,把点(0,–1)代入y=2x+b得b=–1,∴所求直线解析式为y=2x–1.故答案为y=2x–1.【题目点拨】本题考查了待定系数法求函数解析式以及两条直线相交或平行问题,解题时注意:若直线y=k1x+b1与直线y=k2x+b2平行,则k1=k2.14、3【解题分析】试题分析:∵一组数据2,3,x,5,7的平均数是4∴2+3+5+7+x=20,即x=3∴这组数据的众数是3考点:1.平均数;2.众数15、【解题分析】

科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【题目详解】0.00000021的小数点向右移动1位得到2.1,所以0.00000021用科学记数法表示为2.1×10-1,故答案为2.1×10-1.【题目点拨】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.16、50【解题分析】

由平分,可求出∠BDE的度数,根据平行线的性质可得∠ABD=∠BDE.【题目详解】解:∵,∴∠ADE=180°-80°=100°,∵平分,∴∠BDE=∠ADE=50°,∵,∴∠ABD=∠BDE=50°.故答案为:50.【题目点拨】本题考查平行线的性质与角平分线的定义.此题比较简单,解题的关键是注意掌握两直线平行,内错角相等定理的应用,注意数形结合思想的应用.17、70%【解题分析】

利用合格的人数即50-10-5=35人,除以总人数即可求得.【题目详解】解:该班此次成绩达到合格的同学占全班人数的百分比是×100%=70%.

故答案是:70%.【题目点拨】本题考查了读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18、105°或45°【解题分析】试题分析:如图当点E在BD右侧时,求出∠EBD,∠DBC即可解决问题,当点E在BD左侧时,求出∠DBE′即可解决问题.如图,∵四边形ABCD是菱形,∴AB=AD=BC=CD,∠A=∠C=30°,∠ABC=∠ADC=150°,∴∠DBA=∠DBC=75°,∵ED=EB,∠DEB=120°,∴∠EBD=∠EDB=30°,∴∠EBC=∠EBD+∠DBC=105°,当点E′在BD左侧时,∵∠DBE′=30°,∴∠E′BC=∠DBC﹣∠DBE′=45°,∴∠EBC=105°或45°,考点:(1)、菱形的性质;(2)、等腰三角形的性质三、解答题(共66分)19、(1)①P1,P1;②≤xE≤;(2)2≤b≤2+2或-2-2≤b≤-2.【解题分析】

(1)①根据画出图形,根据“中心轴对称”的定义即可判断.②以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.求出点E,点F的坐标即可判断.(2)如图3中,设GK交x轴于P.求出两种特殊位置的b的值即可判断:当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.再根据对称性,求出直线与y轴的负半轴相交时b的范围即可.【题目详解】解:(1)如图1中,①∵OA=1,OP1=1,OP1=1,∴P1,P1与点A是“中心轴对称”的,故答案为P1,P1.②如图2中,以O为圆心,OA为半径画弧交射线OB于E,以O为圆心,OC为半径画弧交射线OB于F.∵在正方形ABCD中,点A(1,0),点C(2,1),∴点B(1,1),∵点E在射线OB上,∴设点E的坐标是(x,y),则x=y,即点E坐标是(x,x),∵点E与正方形ABCD是“中心轴对称”的,∴当点E与点A对称时,则OE=OA=1,过点E作EH⊥x轴于点H,则OH2+EH2=OE2,∴x2+x2=12,解得x=,∴点E的横坐标xE=,同理可求点:F(,),∵E(,),F(,),∴观察图象可知满足条件的点E的横坐标xE的取值范围:≤xE≤.(2)如图3中,设GK交x轴于P.

当一次函数y=x+b经过点G(-2,2)时,2=-2+b,b=2+2,当一次函数y=x+b经过点P(-2,0)时,0=-2+b,b=2,观察图象结合图形W1和图形W2是“中心轴对称”的定义可知,当2≤b≤2+2时,线段MN与四边形GHJK是“中心轴对称”的.根据对称性可知:当-2-2≤b≤-2时,线段MN与四边形GHJK是“中心轴对称”的.综上所述,满足条件的b的取值范围:2≤b≤2+2或-2-2≤b≤-2.【题目点拨】本题属于一次函数综合题,考查了正方形的性质,“中心轴对称”的定义,一次函数的性质等知识,解题的关键是理解题意,学会性质特殊点特殊位置解决问题,属于中考压轴题.20、(1)证明见解析;(2)DF=78;(3)PF=15【解题分析】试题分析:(1)、根据矩形的可得AD=BC,AB=CD,根据折叠图形可得BC=EC,AE=AB,则可得AD=CE,AE=CD,从而得到三角形全等;(2)、设DF=x,则AF=CF=4-x,根据Rt△ADF的勾股定理求出x的值;(3)、根据菱形的性质进行求解.试题解析:(1)、∵矩形ABCD∴AD=BC,AB=CD,AB∥CD∴∠ACD=∠CAB∵△AEC由△ABC翻折得到∴AB="AE,BC=EC,"∠CAE=∠CAB∴AD=CE,DC=EA,∠ACD=∠CAE,在△ADE与△CED中∴△DEC≌△EDA(SSS);(2)、如图1,∵∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.(3)、四边形APCF为菱形设AC、FP相较于点O∵FP⊥AC∴∠AOF=∠AOP又∵∠CAE=∠CAB,∴∠APF=∠AFP∴AF=AP∴FC=AP又∵AB∥CD∴四边形APCF是平行四边形又∵FP⊥AC∴四边形APCF为菱形PF=15考点:(1)、折叠图形的性质;(2)、菱形的性质;(3)、三角形全等;(4)、勾股定理.21、见解析【解题分析】试题分析:根据等腰三角形的性质得出∠ADC=∠BEC=90°,再根据∠C为公共角即可得∠CBE=∠CAD.试题解析:∵AB=AC,AD是BC边上的中线,∴AD⊥BC,又∵BE⊥AC,∴∠ADC=∠BEC=90°,∴∠CBE+∠C=∠CAD+∠C=90°,∴∠CBE=∠CAD.22、猜想的解是,.验证见解析;,.

【解题分析】

此题为阅读分析题,解此题要注意认真审题,找到规律:的解为,.据规律解题即可.【题目详解】猜想的解是,.验证:当时,方程左边,方程

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论