2024届湖北省枣阳市吴店镇清潭第一中学八年级数学第二学期期末检测试题含解析_第1页
2024届湖北省枣阳市吴店镇清潭第一中学八年级数学第二学期期末检测试题含解析_第2页
2024届湖北省枣阳市吴店镇清潭第一中学八年级数学第二学期期末检测试题含解析_第3页
2024届湖北省枣阳市吴店镇清潭第一中学八年级数学第二学期期末检测试题含解析_第4页
2024届湖北省枣阳市吴店镇清潭第一中学八年级数学第二学期期末检测试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省枣阳市吴店镇清潭第一中学八年级数学第二学期期末检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.已知一个直角三角形的两边长分别为3和4,则第三边长的平方是()A.25B.7C.5和7D.25或72.下列因式分解正确的是()A.2x2﹣6x=2x(x﹣6)B.﹣a3+ab=﹣a(a2﹣b)C.﹣x2﹣y2=﹣(x+y)(x﹣y)D.m2﹣9n2=(m+9n)(m﹣9n)3.如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④BE+AC=AB,其中正确的有()A.2个 B.3个 C.4个 D.1个4.若式子有意义,则一次函数的图象可能是()A. B. C. D.5.小亮在同一直角坐标系内作出了和的图象,方程组的解是()A. B. C. D.6.下列从左到右的变形,是因式分解的是A. B.C. D.7.用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是().A. B.C. D.8.如果下列各组数是三角形的三边,那么不能组成直角三角形的一组数是()A.7,24,25 B.,, C.6,8,10 D.9,12,159.某老师为了解学生周末学习时间的情况,在所任班级中随机调查了10名学生,绘成如图所示的条形统计图,则这10名学生周末学均时间是()A.4 B.3 C.2 D.110.如图,中,,,点在反比例函数的图象上,交反比例函数的图象于点,且,则的值为()A. B. C. D.二、填空题(每小题3分,共24分)11.化简:______.12.如图,在中,,,是的角平分线,过点作于点,若,则___.13.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.14.一次函数y=-4x-5的图象不经过第_____________象限.15.为了解一批灯管的使用寿命,适合采用的调查方式是_____(填“普查”或“抽样调查”)16.已知某个正多边形的每个内角都是,这个正多边形的内角和为_____.17.某种商品的进价为15元,出售时标价是22.5元.由于市场不景气销售情况不好,商店准备降价处理,但要保证利润率不低于10%,那么该店最多降价______元出售该商品.18.学校校园歌手大奖赛共有12位选手入围,按成绩取前6位进入决赛.如果王晓鸥同学知道了自己的成绩,要判断能否进入决赛,用数据分析的观点看,她还需要知道的数据是这12位同学的___.三、解答题(共66分)19.(10分)如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求一次函数的解析式;(2)判断点C(4,-2)是否在该一次函数的图象上,说明理由;(3)若该一次函数的图象与x轴交于D点,求△BOD的面积.20.(6分)如图,的对角线、相交于点,.(1)求证:;(2)若,连接、,判断四边形的形状,并说明理由.21.(6分)(1)计算(结果保留根号);(2)分析(1)的结果在哪两个整数之间?22.(8分)已知:如图,在□ABCD中,DE、BF分别是∠ADC和∠ABC的角平分线,交AB、CD于点E、F,连接BD、EF.(1)求证:BD、EF互相平分;(2)若∠A=600,AE=2EB,AD=4,求四边形DEBF的周长和面积.23.(8分)如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180m2(2)能围成总面积为240m2的长方形花圃吗?说明理由24.(8分)如右图所示,直线y1=-2x+3和直线y2=mx-1分别交y轴于点A,B,两直线交于点C(1,n).(1)求m,n的值;(2)求ΔABC的面积;(3)请根据图象直接写出:当y1<y2时,自变量的取值范围.25.(10分)在平面直角坐标系中,如果点、点为某个菱形的一组对角的顶点,且点、在直线上,那么称该菱形为点、的“极好菱形”.如图为点、的“极好菱形”的一个示意图.已知点的坐标为,点的坐标为.(1)点,,中,能够成为点、的“极好菱形”的顶点的是.(2)若点、的“极好菱形”为正方形,求这个正方形另外两个顶点的坐标.(3)如果四边形是点、的“极好菱形”.①当点的坐标为时,求四边形的面积.②当四边形的面积为8,且与直线有公共点时,直接写出的取值范围.26.(10分)感知:如图①,在正方形ABCD中,点E在对角线AC上(不与点A、C重合),连结ED,EB,过点E作EF⊥ED,交边BC于点F.易知∠EFC+∠EDC=180°,进而证出EB=EF.

探究:如图②,点E在射线CA上(不与点A、C重合),连结ED、EB,过点E作EF⊥ED,交CB的延长线于点F.求证:EB=EF

应用:如图②,若DE=2,CD=1,则四边形EFCD的面积为

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

已知直角三角形的两边长,但未明确这两条边是直角边还是斜边,所以求第三边的长必须分类讨论,即4是斜边或直角边的两种情况,然后利用勾股定理求解.【题目详解】解:①若4是直角边,则第三边x是斜边,由勾股定理,得42+32=x2,所以x2=25;②若4是斜边,则第三边x为直角边,由勾股定理,得x2=42-32,所以x2=7;故x2=25或7.故选D.【题目点拨】本题考查了利用勾股定理解直角三角形的能力,当已知条件中没有明确哪是斜边时,要注意讨论,一些学生往往忽略这一点,造成丢解.2、B【解题分析】

分别利用提公因式法和平方差公式进行分析即可.【题目详解】A.2x2﹣6x=2x(x﹣3),故错误;B.﹣a3+ab=﹣a(a2﹣b);故正确;C.﹣x2﹣y2≠﹣(x+y)(x﹣y),不能用平方差公式,故错误;D.m2﹣9n2=(m+3n)(m﹣3n),故错误.【题目点拨】利用提公因式法和平方差公式进行因式分解是解题关键.3、B【解题分析】

根据题中条件,结合图形及角平分线的性质得到结论,与各选项进行比对,排除错误答案,选出正确的结果.【题目详解】∵AD平分∠BAC

∴∠DAC=∠DAE

∵∠C=90°,DE⊥AB

∴∠C=∠E=90°

∵AD=AD

∴△DAC≌△DAE

∴∠CDA=∠EDA

∴①AD平分∠CDE正确;

无法证明∠BDE=60°,

∴③DE平分∠ADB错误;

∵BE+AE=AB,AE=AC

∴BE+AC=AB

∴④BE+AC=AB正确;

∵∠BDE=90°-∠B,∠BAC=90°-∠B

∴∠BDE=∠BAC

∴②∠BAC=∠BDE正确.

故选:B.【题目点拨】考查了角平分线的性质,解题关键是灵活运用其性质进行分析.4、A【解题分析】试题分析:当时,式子有意义,所以k>1,所以1-k<0,所以一次函数的图象过第一三四象限,故选A.考点:1.代数式有意义的条件;2.一次函数图像的性质.5、B【解题分析】

由数形结合可得,直线和的交点即为方程组的解,可得答案.【题目详解】解:由题意得:直线和的交点即为方程组的解,可得图像上两直线的交点为(-2,2),故方程组的解为,故选B.【题目点拨】本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.6、D【解题分析】

把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可.【题目详解】根据因式分解的定义得:从左边到右边的变形,是因式分解的是.其他不是因式分解:A,C右边不是积的形式,B左边不是多项式.故选D.【题目点拨】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边的式子.7、D【解题分析】

由图易知两条直线分别经过(1,1)、(0,-1)两点和(0,2)、(1,1)两点,设出两个函数的解析式,然后利用待定系数法求出解析式,再根据所求的解析式写出对应的二元一次方程,然后组成方程组便可解答此题.【题目详解】由图知,设经过(1,1)、(0,-1)的直线解析式为y=ax+b(a≠0).将(1,1)、(0,-1)两点坐标代入解析式中,解得故过(1,1)、(0,-1)的直线解析式y=2x-1,对应的二元一次方程为2x-y-1=0.设经过(0,2)、(1,1)的直线解析式为y=kx+h(k≠0).将(0,2)、(1,1)两点代入解析式中,解得故过(0,2)、(1,1)的直线解析式为y=-x+2,对应的二元一次方程为x+y-2=0.因此两个函数所对应的二元一次方程组是故选D【题目点拨】此题考查一次函数与二元一次方程(组),解题关键在于要写出两个函数所对应的二元一次方程组,需先求出两个函数的解析式.8、B【解题分析】

根据勾股定理的逆定理,计算每个选项中两个较小数的平方的和是否等于最大数的平方,等于则能组成直角三角形,不等于则不能组成直角三角形.【题目详解】A.,能组成直角三角形,故此选项错误;B.,不能组成直角三角形,故此选项正确;C.,能组成直角三角形,故此选项错误;D.,能组成直角三角形,故此选项错误;故选:B.【题目点拨】本题考查了勾股定理逆定理,解答此题关键是掌握勾股定理的逆定理:已知三角形ABC的三边满足a2+b2=c2,则三角形ABC是直角三角形.9、B【解题分析】

根据题意得:(1×1+2×2+4×3+2×4+1×5)÷10=3(小时),答:这10名学生周末学均时间是3小时;故选B.10、D【解题分析】

过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴,利用AA定理和平行证得△COE∽△OBF∽△AOD,然后根据相似三角形的性质求得,,根据反比例函数比例系数的几何意义求得,从而求得,从而求得k的值.【题目详解】解:过点A作AD⊥x轴,过点C作CE⊥x轴,过点B作BF⊥x轴∴CE∥AD,∠CEO=∠BFO=90°∵∴∠COE+∠FOB=90°,∠ECO+∠COE=90°∴∠ECO=∠FOB∴△COE∽△OBF∽△AOD又∵,∴,∴,∴∵点在反比例函数的图象上∴∴∴,解得k=±8又∵反比例函数位于第二象限,∴k=-8故选:D.【题目点拨】本题考查反比例函数的性质和相似三角形的判定和性质,正确添加辅助线证明三角形相似,利用数形结合思想解题是关键.二、填空题(每小题3分,共24分)11、3【解题分析】分析:根据算术平方根的概念求解即可.详解:因为32=9所以=3.故答案为3.点睛:此题主要考查了算术平方根的意义,关键是确定被开方数是哪个正数的平方.12、【解题分析】

根据角平分线上的点到角的两边距离相等可得DE=CD,再利用勾股定理列式计算即可得解.【题目详解】∵∠ACB=90°,CA=CB,∴∠B=45°,∵AD平分∠CAB,∠ACB=90°,DE⊥AB,∴DE=CD=1,∠BDE=45°,∴BE=DE=1,在Rt△BDE中,根据勾股定理得,BD=.故答案为:.【题目点拨】本题考查了角平分线上的点到角的两边距离相等的性质,勾股定理,熟记性质是解题的关键.13、1.【解题分析】∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.∴△DOE的周长="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周长为1.14、一【解题分析】

根据一次函数的性质可以判断该函数经过哪几个象限,不经过哪个象限,本题得以解决.【题目详解】∵一次函数y=-4x-5,k=-4<0,b=-5<0,∴该函数经过第二、三、四象限,不经过第一象限,故答案为:一.【题目点拨】本题考查一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质解答.15、抽样调查.【解题分析】

根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.【题目详解】解:为了解一批灯管的使用寿命,调查具有破坏性,适合采用的调查方式是抽样调查,故答案为:抽样调查.【题目点拨】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.16、720°【解题分析】

先求得这个多边形外角的度数,再求得多边形的边数,根据多边形的内角和公式即可求得这个多边形的边数.【题目详解】∵某个正多边形的每个内角都是,∴这个正多边形的每个外角都是,∴这个多边形的边数为:=6.∴这个正多边形的内角和为:(6-2)×180°=720°.故答案为:720°.【题目点拨】本题考查了多边形的内外角和,熟练运用多边形的内外角和公式是解决问题的关键.17、1【解题分析】先设最多降价x元出售该商品,则出售的价格是22.5-x-15元,再根据利润率不低于10%,列出不等式即可.解:设最多降价x元出售该商品,则22.5-x-15≥15×10%,解得x≤1.

故该店最多降价1元出售该商品.“点睛”本题考查一元一次不等式的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.18、中位数.【解题分析】

参赛选手要想知道自己是否能进入前6名,只需要了解自己的成绩与全部成绩的中位数的大小即可.【题目详解】由于总共有12个人,且他们的分数互不相同,要判断是否进入前6名,只要把自己的成绩与中位数进行大小比较.故应知道中位数的多少.故答案为中位数.【题目点拨】本题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.三、解答题(共66分)19、(1)y=-x+3;(2)不在,理由见解析;(3)3【解题分析】

(1)首先求得B的坐标,然后利用待定系数法即可求得函数的解析式;(2)把C的坐标代入一次函数的解析式进行检验即可;(3)首先求得D的坐标,然后利用三角形的面积公式求解.解:(1)在y=2x中,令x=1,得y=2,则点B的坐标是(1,2),设一次函数的解析式是y=kx+b(k≠0),则,解得故一次函数的解析式是y=-x+3.(2)点C(4,-2)不在该一次函数的图象上.理由:对于y=-x+3,当x=4时,y=-1≠-2,所以点C(4,-2)不在该函数的图象上.(3)在y=-x+3中,令y=0,得x=3,则点D的坐标是(3,0),则S△BOD=×OD×2=×3×2=3.点睛:本题主要考查了用待定系数法求函数的解析式,解题的重点在于要先根据条件列出关于字母系数的方程,解方程求解即可得到函数解析式.20、(1)证明见解析;(2)矩形,理由见解析;【解题分析】

(1)根据平行四边形的性质得出BO=DO,AO=OC,求出OE=OF,根据全等三角形的判定定理推出即可;

(2)根先推出四边形EBFD是平行四边形,再根据矩形的判定得出即可.【题目详解】(1)证明:∵四边形ABCD是平行四边形,

∴BO=DO,AO=OC,

∵AE=CF,

∴AO-AE=OC-CF,

即:OE=OF,

在△BOE和△DOF中,

∴△BOE≌△DOF(SAS);

(2)矩形,

证明:∵BO=DO,OE=OF,

∴四边形BEDF是平行四边形,

∵BD=EF,

∴平行四边形BEDF是矩形.【题目点拨】此题考查平行四边形的性质和判定,全等三角形的判定和矩形的判定,能灵活运用定理进行推理是解题的关键.21、(1);(2)【解题分析】

(1)先去括号,再将二次根式化简为最简二次根式,并合并;

(2)确认=27,再确认25<27<36,可得结论.【题目详解】解:原式,∴在和6之间.【题目点拨】本题考查了二次根式的加减混合运算和无理数的估算,熟练掌握二次根式的运算法则是关键.22、(1)证明见解析;(2)四边形DEBF的周长为12,面积是4【解题分析】分析:(1)证明EF、BD互相平分,只要证DEBF是平行四边形;利用两组对边分别平行来证明.

(2)求四边形DEBF的周长,求出BE和DE即可.详解:(1)∵四边形ABCD是平行四边形∴CD∥AB,CD=AB,AD=BC∵DE、BF分别是∠ADC和∠ABC的角平分线∴∠ADE=∠CDE,∠CBF=∠ABF∵CD∥AB,∴∠AED=∠CDE,∠CFB=∠ABF∴∠AED=∠ADE,∠CFB=∠CBF∴AE=AD,CF=CB,∴AE=CF,∴AB-AE=CD-CF即BE=DF∵DF∥BE,∴四边形DEBF是平行四边形∵∠A=60°,AE=AD∴△ADE是等边三角形∵AD=4,∴DE=AE=4,∵AE=2EB,∴BE=2∴四边形DEBF的周长=2(BE+DE)=2(4+2)=12过D点作DG⊥AB于点G,在Rt△ADG中,AD=4,∠A=60°,∴DG=ADcos∠A=4×=∴四边形DEBF的面积=BE×DG=2×=4点睛:此题主要考查了平行四边形的性质与判定.在应用判定定理判定平行四边形时,应仔细观察题目所给的条件,仔细选择适合于题目的判定方法进行解答,避免混用判定方法.23、(1)10米;(1)不能围成总面积为240m2【解题分析】

(1)设出AB的长是x米,则BC的长为(48-3x)米,由长方形的面积计算公式列方程解答即可;

(1)利用(1)的方法列出方程,利用判别式进行解答.【题目详解】解:(1)设AB的长是x米,则BC的长为(48-3x)米,根据题意列方程得,

x(48-3x)=180,

解得x1=6,x1=10,

当x=6时,48-3x=30>15,不符合题意,舍去;

当x=10时,48-3x=18<15,符合题意;

答:当AB的长是10米时,围成长方形花圃ABCD的面积为180m1.

(1)不能,理由如下:

同(1)可得x(48-3x)=140,

整理得x1-16x+80=0,

△=(-16)1-4×80=-64<0,

所以此方程无解,

即不能围成总面积为140m1的长方形花圃.【题目点拨】此题主要考查运用长方形面积计算方法列一元二次方程解决实际问题与根的判别式的应用.24、(1)n=1,m=2;(2)2;(3)当y1<y2时,x>1.【解题分析】

(1)利用待定系数法把点坐标代入可算出的值,然后再把点坐标代入可算出的值;(2)首先根据函数解析式计算出两点坐标,然后再根据三点坐标求出的面积;(3)根据点坐标,结合一次函数与不等式的关系可得出答案.【题目详解】解:(1)∵点C(1,n)在直线y1=-2x+3上,∴n=-2×1+3=1,∴C(1,1),∵y2=mx-1过点C(1,1),∴1=m-1,解得m=2.(2)当x=0时,y1=-2x+3=3,则A(0,3),当x=0时,y2=2x-1=-1,则B(0,-1),∴ΔABC的面积为×4×1=2.(3)∵C(1,1),∴当y1<y2时,x>1.【题目点拨】此题主要考查了两函数图象相交问题,以及一次函数与不等式的关系,关键是认真分析图象,能从图象中得到正确信息.25、(1),;(2)这个正方形另外两个顶点的坐标为、;(3)①;②的取值范围是【解题分析】

(1)根据“极好菱形”的定义判断即可;(2)根据点、的“极好菱形”为正方形求解即可;(3)①四边形MNPQ是点M、P的“极好菱形”,点的坐标为时,求四边形是正方形,求其面积即可;②根据菱形的面积公式求得菱形另一条对角线的长,再由与直

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论