![2024届吉林省长春市第四十七中学数学八年级第二学期期末预测试题含解析_第1页](http://file4.renrendoc.com/view11/M02/15/0F/wKhkGWXaFNSAG9_iAAH1b8V6q1Q082.jpg)
![2024届吉林省长春市第四十七中学数学八年级第二学期期末预测试题含解析_第2页](http://file4.renrendoc.com/view11/M02/15/0F/wKhkGWXaFNSAG9_iAAH1b8V6q1Q0822.jpg)
![2024届吉林省长春市第四十七中学数学八年级第二学期期末预测试题含解析_第3页](http://file4.renrendoc.com/view11/M02/15/0F/wKhkGWXaFNSAG9_iAAH1b8V6q1Q0823.jpg)
![2024届吉林省长春市第四十七中学数学八年级第二学期期末预测试题含解析_第4页](http://file4.renrendoc.com/view11/M02/15/0F/wKhkGWXaFNSAG9_iAAH1b8V6q1Q0824.jpg)
![2024届吉林省长春市第四十七中学数学八年级第二学期期末预测试题含解析_第5页](http://file4.renrendoc.com/view11/M02/15/0F/wKhkGWXaFNSAG9_iAAH1b8V6q1Q0825.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省长春市第四十七中学数学八年级第二学期期末预测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.下列四个图形中,既是轴对称又是中心对称的图形是A.1个 B.2个 C.3个 D.4个2.某商店在节日期间开展优惠促销活动:凡购买原价超过200元的商品,超过200元的部分可以享受打折优惠若购买商品的实际付款金额y(单位:元)与商品原价x(单位:元)之间的函数关系的a图象如图所示,则图中a的值是()A.300 B.320 C.340 D.3603.中国华为麒麟985处理器是采用7纳米制程工艺的手机芯片,在指甲盖大小的尺寸上塞进了120亿个晶体管,是世界上最先进的具有人工智能的手机处理器,将120亿个用科学记数法表示为()A.个 B.个 C.个 D.个4.若关于的一次函数,随的增大而减小,且关于的不等式组无解,则符合条件的所有整数的值之和是()A. B. C.0 D.15.如图,平行四边形ABCD中,AC⊥AB,点E为BC边中点,AD=6,则AE的长为()A.2 B.3 C.4 D.56.如图,四边形ABCD的对角线AC,BD相交于点O,且AB∥CD,添加下列条件后仍不能判断四边形ABCD是平行四边形的是()A.AB=CD B.AD∥BC C.OA=OC D.AD=BC7.如图,将▱ABCD沿对角线AC进行折叠,折叠后点D落在点F处,AF交BC于点E,有下列结论:①△ABF≌△CFB;②AE=CE;③BF∥AC;④BE=CE,其中正确结论的个数是()A.1 B.2 C.3 D.48.关于x的不等式组的解集为x<3,那么m的取值范围为()A.m=3 B.m>3 C.m<3 D.m≥39.为考察甲、乙、丙三种小麦的长势,在同一时期分别从中随机抽取部分麦苗,计算后得到苗高(单位:cm)的方差为S甲2=4.1,SA.甲 B.乙 C.丙 D.都一样10.下列图形中,不是中心对称图形的是()A. B. C. D.二、填空题(每小题3分,共24分)11.在菱形中,若,,则菱形的周长为________.12.若关于的方程无解,则的值为________.13.观察下列各式:,,,……请利用你所发现的规律,计算+++…+,其结果为_______.14.将一副三角尺如图所示叠放在一起,若AB=8cm,则阴影部分的面积是_____cm1.15.已知线段a,b,c能组成直角三角形,若a=3,b=4,则c=_____.16.小刚从家到学校的路程为2km,其中一段是lkm的平路,一段是lkm的上坡路.已知小刚在上坡、平路和下坡的骑车速度分别为akm/h,2akm/h,3akm/h,则小刚骑车从家到学校比从学校回家花费的时间多_____h.17.已知:等腰三角形ABC的面积为30,AB=AC=10,则底边BC的长度为_________m.18.“同旁内角互补,两直线平行”的逆命题是_____________________________.三、解答题(共66分)19.(10分)如图,将△ABC绕点A顺时针旋转得到△ADE(点B,C的对应点分别是D,E),当点E在BC边上时,连接BD,若∠ABC=30°,∠BDE=10°,求∠EAC.20.(6分)如图,等边△ABC的边长6cm.①求高AD;②求△ABC的面积.21.(6分)为弘扬中华传统文化,了解学生整体听写能力,某校组织全校1000名学生进行一次汉字听写大赛初赛,从中抽取部分学生的成绩进行统计分析,根据测试成绩绘制出了频数分布表和频数分布直方图:分组/分频数频率50≤x<6060.1260≤x<70a0.2870≤x<80160.3280≤x<90100.2090≤x≤100cb合计501.00(1)表中的a=______,b=______,c=______;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图;(3)如果成绩达到90及90分以上者为优秀,可推荐参加进入决赛,那么请你估计该校进入决赛的学生大约有多少人.22.(8分)如图①,E是AB延长线上一点,分别以AB、BE为一边在直线AE同侧作正方形ABCD和正方形BEFG,连接AG、CE.(1)试探究线段AG与CE的大小关系,并证明你的结论;(2)若AG恰平分∠BAC,且BE=1,试求AB的长;(3)将正方形BEFG绕点B逆时针旋转一个锐角后,如图②,问(1)中结论是否仍然成立,说明理由.23.(8分)如图,▱ABCD在平面直角坐标系中,点A(﹣2,0),点B(2,0),点D(0,3),点C在第一象限.(1)求直线AD的解析式;(2)若E为y轴上的点,求△EBC周长的最小值;(3)若点Q在平面直角坐标系内,点P在直线AD上,是否存在以DP,DB为邻边的菱形DBQP?若存在,求出点P的坐标;若不存在,请说明理由.24.(8分)如图,在矩形ABCD中,AB=3cm,BC=6cm.点P从点D出发向点A运动,运动到点A即停止;同时,点Q从点B出发向点C运动,运动到点C即停止,点P、Q的速度都是1cm/s.连接PQ、AQ、CP.设点P、Q运动的时间为ts.(1)当t为何值时,四边形ABQP是矩形;(2)当t为何值时,四边形AQCP是菱形;(3)分别求出(2)中菱形AQCP的周长和面积.25.(10分)如图,点E,F分别是锐角∠A两边上的点,AE=AF,分别以点E,F为圆心,以AE的长为半径画弧,两弧相交于点D,连接DE,DF.(1)请你判断所画四边形的性状,并说明理由;(2)连接EF,若AE=8厘米,∠A=60°,求线段EF的长.26.(10分)为了解某校九年级男生在体能测试的引体向上项目的情况,随机抽取了部分男生引体向上项目的测试成绩,绘制出如下的统计图①和图②.请根据相关信息,解答下列问题:(Ⅰ)本次接受随机抽样调查的男生人数为,图①中m的值为;(Ⅱ)求本次调查获取的样本数据的平均数、众数和中位数;(Ⅲ)若规定引体向上6次及以上(含6次)为该项目良好,根据样本数据,估计该校320名九年级男生中该项目良好的人数.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据轴对称图形与中心对称图形的概念进行判断即可.【题目详解】既是轴对称又是中心对称的图形是第一个和第三个;是轴对称不是中心对称的图形是第二个和第四个;故选.【题目点拨】本题考查的是中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.2、C【解题分析】
首先设超过200元实际付款金额与商品原价的函数关系式为,由图像可知,一次函数经过(200,200)(500,410),将其代入解析式,可得函数解析式为,将x=400代入解析式,可得a=340.【题目详解】解:设超过200元实际付款金额与商品原价的函数关系式为由图像可知,一次函数经过(200,200)(500,410),将其代入解析式,得,解得即函数解析式为,将x=400代入解析式,可得a=340.【题目点拨】此题主要考查一次函数的图像性质和解析式的求解,熟练掌握即可得解.3、C【解题分析】
科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值时,n是正数;当原数的绝对值时,n是负数.【题目详解】120亿个用科学记数法可表示为:个.故选C.【题目点拨】此题考查科学记数法的表示方法.科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.4、C【解题分析】
根据一次函数的性质,若y随x的增大而减小,则比例系数小于0,求出k<2,再根据不等式组无解可求出k≥−1,得到符合条件的所有整数k的值,再求和即可.【题目详解】解:∵y=(k−2)x+3的函数值y随x的增大而减小,∴k−2<0,可得:k<2,解不等式组,可得:,∵不等式组无解,∴k≥−1,所以符合条件的所有整数k的值是:−1,0,1,其和为0;故选:C.【题目点拨】本题考查了解一元一次不等式组及一次函数的性质,在直线y=kx+b中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.5、B【解题分析】由平行四边形得AD=BC,在Rt△BAC中,点E为BC边中点,根据直角三角形的中线等于斜边的一半即可求出AE.解:∵四边形ABCD是平行四边形,∴AD=BC=6,∵AC⊥AB,∴△BAC为Rt△BAC,∵点E为BC边中点,∴AE=BC=.故选B.6、D【解题分析】
根据平行四边形的判定定理逐个判断即可;1、两组对边分别平行的四边形是平行四边形;2、两组对边分别相等的四边形是平行四边形;3、对角线互相平分的四边形是平行四边形;4、一组对边平行且相等的四边形是平行四边形;5、两组对角分别相等的四边形是平行四边形.【题目详解】A、由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;B、由“两组对边分别平行的四边形是平行四边形”可得出四边形ABCD是平行四边形;C、由AB∥CD可得出∠BAO=∠DCO、∠ABO=∠CDO,结合OA=OC可证出△ABO≌△CDO(AAS),根据全等三角形的性质可得出AB=CD,由“一组对边平行且相等的四边形是平行四边形”可得出四边形ABCD是平行四边形;D、由AB∥CD、AD=BC无法证出四边形ABCD是平行四边形.故选D.【点评】本题考查了平行四边形的判定以及全等三角形的判定与性质,逐一分析四个选项给定条件能否证明四边形ABCD是平行四边形是解题的关键.7、C【解题分析】
根据SSS即可判定△ABF≌△CFB,根据全等三角形的性质以及等式性质,即可得到EC=EA,根据∠EBF=∠EFB=∠EAC=∠ECA,即可得出BF∥AC.根据E不一定是BC的中点,可得BE=CE不一定成立.【题目详解】解:由折叠可得,AD=AF,DC=FC,又∵平行四边形ABCD中,AD=BC,AB=CD,∴AF=BC,AB=CF,在△ABF和△CFB中,∴△ABF≌△CFB(SSS),故①正确;∴∠EBF=∠EFB,∴BE=FE,∴BC﹣BE=FA﹣FE,即EC=EA,故②正确;∴∠EAC=∠ECA,又∵∠AEC=∠BEF,∴∠EBF=∠EFB=∠EAC=∠ECA,∴BF∥AC,故③正确;∵E不一定是BC的中点,∴BE=CE不一定成立,故④错误;故选:C.【题目点拨】本题考查的是全等三角形的性质和平行四边形的性质,熟练掌握二者是解题的关键.8、D【解题分析】
解不等式组得:,∵不等式组的解集为x<3∴m的范围为m≥3,故选D.9、B【解题分析】
根据方差的定义,方差越小数据越稳定.由此即可解答.【题目详解】∵S甲2=4.1,S∴S丙2>S甲2>S乙2,方差最小的为乙,∴麦苗高度最整齐的是乙.故选B.【题目点拨】本题考查了方差的应用,方差是用来衡量一批数据的波动大小(即这批数据偏离平均数的大小)的统计量.在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.10、A【解题分析】
根据把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形可得答案.【题目详解】A、不是中心对称图形,故此选项正确;B、是中心对称图形,故此选项错误;C、是中心对称图形,故此选项错误;D、是中心对称图形,故此选项错误;故选:A.【题目点拨】此题主要考查了中心对称图形,关键是要寻找对称中心,旋转180度后两部分重合.二、填空题(每小题3分,共24分)11、8【解题分析】
由菱形的,可得∠BAD=∠BCD=60°,则在Rt△AOB中根据勾股定理以及30°所对的直角边是斜边的一半,列方程可以求出AB的长,即可求出菱形周长.【题目详解】解:如图,∵ABCD为菱形∴∠BAD=∠BCD,BD⊥AC,O为AC、BD中点又∵∴∠BAD=∠BCD=60°∴∠BAC=∠BAD=30°在Rt△AOB中,BO=AB,设BO=x,根据勾股定理可得:解得x=1∴AB=2x=2∴菱形周长为8故答案为8【题目点拨】本题考查菱形的性质综合应用,灵活应用菱形性质是解题关键.12、【解题分析】
分式方程去分母转化为整式方程,由分式方程无解得到x+1=0,求出x的值,代入整式方程求出m的值即可.【题目详解】去分母得:3x−2=2x+2+m,由分式方程无解,得到x+1=0,即x=−1,代入整式方程得:−5=−2+2+m,解得:m=−5,故答案为-5.【题目点拨】此题考查分式方程的解,解题关键在于掌握运算法则.13、【解题分析】分析:直接根据已知数据变化规律进而将原式变形求出答案.详解:由题意可得:+++…+=+1++1++…+1+=9+(1﹣+﹣+﹣+…+﹣)=9+=9.故答案为9.点睛:此题主要考查了数字变化规律,正确将原式变形是解题关键.14、2【解题分析】
根据含30度角的直角三角形的性质求出AC的长,然后证明∠AFC=45°,得到CF的长,再利用三角形面积公式计算即可.【题目详解】解:∵∠B=30°,∠ACB=90°,∠E=90°,AB=2cm,∴AC=4cm,BC∥ED,∴∠AFC=∠D=45°,∴AC=CF=4cm,∴阴影部分的面积=×4×4=2(cm1),故答案为:2.【题目点拨】本题考查了含30度角的直角三角形的性质,求出AC=CF=4cm是解答此题的关键.15、5或【解题分析】
由于没有指明斜边与直角边,因此要分4为斜边与4为直角边两种情况来求解.【题目详解】分两种情况,当4为直角边时,c为斜边,c==5;当长4的边为斜边时,c==,故答案为:5或.【题目点拨】本题利用了勾股定理求解,注意要讨论c为斜边或是直角边的情况.16、【解题分析】
本题中需要注意的一点是:去时的上坡和下坡路与回来时的上坡和下坡路正好相反,平路路程、速度所用时间不变.题中的等量关系是:从家到学校的路程为2千米;去时上坡时间+平路时间=从家到学校的总时间;回时下坡时间+平路时间=从学校回家花费的时间,据此可列式求解.【题目详解】小刚骑车从家到学校比从学校回家花费的时间多:()-()=-=h,故答案为:【题目点拨】本题考查列代数式,解答本题的关键读懂题意,找出合适的数量关系.17、或【解题分析】
作CD⊥AB于D,则∠ADC=∠BDC=90°,由三角形的面积求出CD,由勾股定理求出AD;分两种情况:①等腰△ABC为锐角三角形时,求出BD,由勾股定理求出BC即可;②等腰△ABC为钝角三角形时,求出BD,由勾股定理求出BC即可.【题目详解】作CD⊥AB于D,
则∠ADC=∠BDC=90°,△ABC的面积=AB⋅CD=×10×CD=30,
解得:CD=6,
∴AD==8m;
分两种情况:
①等腰△ABC为锐角三角形时,如图1所示:
BD=AB−AD=2m,
∴BC==;
②等腰△ABC为钝角三角形时,如图2所示:
BD=AB+AD=18m,
∴BC==;
综上所述:BC的长为或.
故答案为:或.【题目点拨】本题考查等腰三角形的性质,解题的关键是掌握等腰三角形的性质,分情况讨论等腰三角形.18、两直线平行,同旁内角互补【解题分析】分析:把一个命题的条件和结论互换就得到它的逆命题.命题“同旁内角互补,两直线平行”的条件是同旁内角互补,结论是两直线平行,故其逆命题是两直线平行,同旁内角互补.详解:命题“同旁内角互补,两直线平行”的逆命题是:两直线平行,同旁内角互补,
故答案为两直线平行,同旁内角互补.点睛:考查了互逆命题的知识及命题的真假判断,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.三、解答题(共66分)19、∠EAC=100°.【解题分析】
由旋转可得,△ABC≌△ADE,进而得出∠ABC=∠ADE=30°,AD=AB,进而得到∠ADB=40°=∠ABD,∠BAD=100°,再根据∠BAC=∠DAE,即可得到∠EAC=∠DAB=100°.【题目详解】由旋转可得,△ABC≌△ADE,∴∠ABC=∠ADE=30°,AD=AB,∵∠BDE=10°,∴∠ADB=40°=∠ABD,∴∠BAD=100°,又∵△ABC≌△ADE,∴∠BAC=∠DAE,∴∠EAC=∠DAB=100°.【题目点拨】本题主要考查了旋转的性质,解题时注意:旋转前、后的图形全等.20、(1)(2)【解题分析】本题考查了等边三角形的性质和勾股定理.①中,运用等腰三角形的三线合一和勾股定理;②中,根据三角形的面积公式进行计算即可.21、(1)14;0.08;4;(2)详见解析;(3)80.【解题分析】
(1)根据频率分布表确定出总人数,进而求出a,b,c的值即可;(2)把上面的频数分布直方图补充完整,并画出频数分布折线图,如图所示;(3)根据样本中90分及90分以上的百分比,乘以1000即可得到结果.【题目详解】解:(1)根据题意得:a=6÷0.12×0.28=14,b=1﹣(0.12+0.28+0.32+0.20)=0.08,c=6÷0.12×0.08=4;故答案为:14;0.08;4;(2)频数分布直方图、折线图如图,(3)根据题意得:1000×(4÷50)=80(人),则你估计该校进入决赛的学生大约有80人.【题目点拨】此题考查了频数(率)分布折线图,用样本估计总体,频数(率)分布表,以及频数(率)分布直方图,弄清题中的数据是解本题的关键.22、(1)AG=CE.,理由见解析;(2)+1;;(3)AG=CE仍然成立,理由见解析;【解题分析】
(1)根据正方形的性质可得AB=CB,BG=BE,∠ABG=∠CBE=90°,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证;(2)利用角平分线的性质以及正方形的性质得出MC=MG,进而利用勾股定理得出GC的长,即可得出AB的长;(3)先求出∠ABG=∠CBE,然后利用“边角边”证明△ABG和△CBE全等,再根据全等三角形对应边相等即可得证.【题目详解】(1)AG=CE.理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABG=∠CBE=90°,在△ABG和△CBE中,∵,∴△ABG≌△CBE(SAS),∴AG=CE;(2)过点G作GM⊥AC于点M,∵AG恰平分∠BAC,MG⊥AC,GB⊥AB,∴BG=MG,∵BE=1,∴MG=BG=1,∵AC平分∠DCB,∴∠BCM=45°,∴MC=MG=1,∴GC=,∴AB的长为:AB=BC=+1;(3)AG=CE仍然成立.理由如下:在正方形ABCD和正方形BEFG中,AB=CB,BG=BE,∠ABC=∠EBG=90°,∵∠ABG=∠ABC−∠CBG,∠CBE=∠EBG−∠CBG,∴∠ABG=∠CBE,在△ABG和△CBE中,∵,∴△ABG≌△CBE(SAS),∴AG=CE.【题目点拨】此题考查几何变换综合题,解题关键在于证明△ABG和△CBE全等.23、(1);(2)△EBC周长的最小值为;(1)满足条件的点P坐标为(﹣2,0)或(2,6).【解题分析】
(1)设直线AD的解析式为y=kx+b,把A、D两点坐标代入,把问题转化为解方程组即可;(2)因为A、B关于y轴对称,连接AC交y轴于E,此时△BEC的周长最小;(1)分两种情形分别讨论求解即可解决问题;【题目详解】.解:(1)设直线AD的解析式为y=kx+b,把A(﹣2,0),D(0,1)代入y=kx+b,得到,解得,∴直线AD的解析式为y=x+1.(2)如图1中,∵A(﹣2,0),B(2,0),∴A、B关于y轴对称,连接AC交y轴于E,此时△BEC的周长最小,周长的最小值=EB+EC+BC=EA+EC+BC=AC+BC,∵A(﹣2,0),C(4,1),B(2,0),∴AC=,∴△EBC周长的最小值为:.(1)如图2中,①当点P与A重合时,四边形DPQB是菱形,此时P(﹣2,0),②当点P′在AD的延长线上时,DP′=AD,此时四边形BDP′Q是菱形,此时P′(2,6).综上所述,满足条件的点P坐标为(﹣2,0)或(2,6);【题目点拨】本题考查一次函数综合题、平行四边形的性质、菱形的判定和性质、轴对称最短问题、待定系数法等知识,解题的关键是学会利用轴对称解决最短问题,学会用分类讨论的思想思考问题,属于中考压轴题.24、(1)t=3,ABQP是矩形;(2)t=,AQCP是菱形;(3)周长为:15cm,面积为:(cm2).【解题分析】
(1)当四边形ABQP是矩形时,BQ=AP,据此求得t的值;
(2)当四边形AQCP是菱形时,AQ=AC,列方程求得运动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025北师数学六下第一单元《圆锥的体积》教学分析
- 行政转正申请书
- 奖学金申请书的格式
- 加大研发投入保持技术领先地位
- DB2111-T 0026-2023 日光温室补光灯应用技术规程
- 2024-2025学年山东省名校联盟高二上学年11月期中物理试题(解析版)
- 管理村项目协议书(2篇)
- 离婚财产保全申请书
- 2024-2025学年天津市和平区高三上学期1月期末英语试题(解析版)
- 湖北省随州市部分高中2024-2025学年高三上学期12月月考物理试题(解析版)
- 注水井洗井操作规程
- 贝克曼梁测定路基路面回弹弯沉
- 某道路拓宽工程施工组织设计
- 敏感红血丝皮肤专题教学讲解培训课件
- 第一章染整工厂设计
- 机电安装施工质量标准化实施图册
- 易能变频器说明书
- 上虞市化工、印染企业名单-企业负责人信息及联系方式
- 【实用资料】隐匿阴茎业务学习PPT
- 西藏自治区建筑与市政工程竣工验收报告
- ge680ct用户学习aw4.6软件手册autobone xpress指南中文
评论
0/150
提交评论