版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届海南省省直辖县数学八年级第二学期期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.一次函数的图象不经过()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.下列命题的逆命题成立的是()A.对顶角相等B.菱形的两条对角线互相垂直平分C.全等三角形的对应角相等D.如果两个实数相等,那么它们的绝对值相等3.若正比例函数的图像经过第一、三象限,则的值可以是()A.3 B.0或1 C. D.4.下列代数式是分式的是()A. B. C. D.5.如果是二次根式,那么x应满足的条件是()A.x≠2的实数 B.x<2的实数C.x>2的实数 D.x>0且x≠2的实数6.如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是()A.AD=BC B.AC=BDC.AB∥CD D.∠BAC=∠DCA7.下列多项式中不能用公式进行因式分解的是()A.a2+a+ B.a2+b2-2ab C. D.8.下列哪个点在函数的图象上()A. B. C. D.9.(2016广西贵港市)式子在实数范围内有意义,则x的取值范围是()A.x<1 B.x≤1 C.x>1 D.x≥110.如图,用若干大小相同的黑白两种颜色的长方形瓷砖,按下列规律铺成一列图案,则第7个图案中黑色瓷砖的个数是()A.19 B.20 C.21 D.22二、填空题(每小题3分,共24分)11.弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物质量x(kg)0.51.01.52.02.5当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.12.一般地,在平面直角坐标系中,我们求点到直线间的距离,可用下面的公式求解:点到直线的距离公式是:如:求:点到直线的距离.解:由点到直线的距离公式,得根据平行线的性质,我们利用点到直线的距离公式,也可以求两平行线间的距离.则两条平行线:和:间的距离是______.13.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.14.已知为实数,且,则______.15.已知关于X的一元二次方程有实数根,则m的取值范围是____________________16.已知:一组邻边分别为和的平行四边形,和的平分线分别交所在直线于点,,则线段的长为________.17.)如图,Rt△ABC中,C=90o,以斜边AB为边向外作正方形ABDE,且正方形对角线交于点D,连接OC,已知AC=5,OC=6,则另一直角边BC的长为.18.一组数据2,6,,10,8的平均数是6,则这组数据的方差是______.三、解答题(共66分)19.(10分)某公司经营甲、乙两种商品,两种商品的进价和售价情况如下表:进价(万元/件)售价(万元/件)甲1214.5乙810两种商品的进价和售价始终保持不变.现准备购进甲、乙两种商品共20件.设购进甲种商品件,两种商品全部售出可获得利润为万元.(1)与的函数关系式为__________________;(2)若购进两种商品所用的资金不多于200万元,则该公司最多购进多少合甲种商品?(3)在(2)的条件下,请你帮该公司设计一种进货方案,使得该公司获得最大利润,并求出最大利润是多少?20.(6分)如图,正方形ABCD中,点E是BC延长线上一点,连接DE,过点B作BF⊥DE于点F,连接FC.(1)求证:∠FBC=∠CDF;(2)作点C关于直线DE的对称点G,连接CG,FG,猜想线段DF,BF,CG之间的数量关系,并证明你的结论.21.(6分)已知关于x的方程有两个不相等的实数根.(1)求k的取值范围;(2)是否存在实数k,使此方程的两个实数根的倒数和等于0?若存在,求出k的值;若不存在,说明理由.22.(8分)已知在中,是边上的一点,的角平分线交于点,且,求证:.23.(8分)(1)已知,,求的值.(2)若,求的平方根.24.(8分)某工厂准备加工600个零件,在加工了100个零件后,采取了新技术,使每天的工作效率是原来的2倍,结果共用7天完成了任务,求该厂原来每天加工多少个零件?25.(10分)(1)如图1,平行四边形纸片ABCD中,AD=5,S甲行四边形纸片ABCD=15,过点A作AE⊥BC,垂足为E,沿AE剪下△ABE,将它平移至△DCE′的位置,拼成四边形AEE′D,则四边形AEE′D的形状为A.平行四边形B.菱形C.矩形D.正方形(2)如图2,在(1)中的四边形纸片AEE′D中,在EE′上取一点F,使EF=4,剪下△AEF,剪下△AEF,将它平移至△DE′F′的位置,拼成四边形AFF′D.求证:四边形AFF′D是菱形.26.(10分)如图,在△ABC中,AD是角平分钱,点E在AC上,且∠EAD=∠ADE.(1)求证:△DCE∽△BCA;(2)若AB=3,AC=1.求DE的长.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
由二次函数,可得函数图像经过一、三、四象限,所以不经过第二象限【题目详解】解:∵,∴函数图象一定经过一、三象限;又∵,函数与y轴交于y轴负半轴,
∴函数经过一、三、四象限,不经过第二象限故选B【题目点拨】此题考查一次函数的性质,要熟记一次函数的k、b对函数图象位置的影响2、B【解题分析】
首先写出各个命题的逆命题,再进一步判断真假.【题目详解】A、对顶角相等的逆命题是相等的角是对顶角,是假命题;B、菱形的两条对角线互相垂直平分的逆命题是两条对角线互相垂直平分的四边形的菱形,是真命题;C、全等三角形的对应角相等的逆命题是对应角相等的三角形全等,是假命题;D、如果两个实数相等,那么它们的绝对值相等的逆命题是如果两个实数的绝对值相等,那么相等,是假命题;故选:B.【题目点拨】本题考查逆命题的真假性,是易错题.易错易混点:本题要求的是逆命题的真假性,学生易出现只判断原命题的真假,也就是审题不认真.3、A【解题分析】
根据正比例函数的性质可得k>0,再根据k的取值范围可以确定答案.【题目详解】解:∵正比例函数y=kx的图象在第一、三象限,∴k>0,故选:A.【题目点拨】此题主要考查了正比例函数的性质,关键是掌握正比例函数图象的性质:它是经过原点的一条直线.当k>0时,图象经过一、三象限,y随x的增大而增大;当k<0时,图象经过二、四象限,y随x的增大而减小.4、D【解题分析】
判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.【题目详解】、、的分母中均不含有字母,因此它们是整式,而不是分式;分母中含有字母,因此是分式.故选:D.【题目点拨】考查分式的定义,掌握分式的定义是判断代数式是不是分式的前提.5、C【解题分析】
根据二次根式的性质和分式的意义,被开方数大于等于2,分母不等于2,列不等式组求解.【题目详解】根据题意得:,解得:x>1.故选C.【题目点拨】主要考查了二次根式的意义和性质.概念:式子(a≥2)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.当二次根式在分母上时还要考虑分母不等于零,此时被开方数大于2.6、B【解题分析】
解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.故选B.7、D【解题分析】【分析】A.B可以用完全平方公式;C.可以用完全平方公式;D.不能用公式进行因式分解.【题目详解】A.,用完全平方公式;B.,用完全平方公式;C.,用平方差公式;D.不能用公式.故正确选项为D.【题目点拨】此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.8、C【解题分析】
分别把x=2和x=−2代入解析式求出对应的y值来判断点是否在函数图象上.【题目详解】解:(1)当x=2时,y=2,所以(2,1)不在函数的图象上,(2,0)也不在函数的图象上;(2)当x=−2时,y=0,所以(−2,1)不在函数的图象上,(−2,0)在函数的图象上.故选:C.【题目点拨】本题考查的知识点是一次函数图象上点的坐标特征,即直线上的点的坐标一定适合这条直线的解析式.9、C【解题分析】依题意得:,解得x>1,故选C.10、D【解题分析】
观察图形,发现:黑色纸片在4的基础上,依次多3个;根据其中的规律,用字母表示即可.【题目详解】第个图案中有黑色纸片3×1+1=4张第2个图案中有黑色纸片3×2+1=7张,第3图案中有黑色纸片3×3+1=10张,…第n个图案中有黑色纸片=3n+1张.当n=7时,3n+1=3×7+1=22.故选D.【题目点拨】此题考查规律型:图形的变化类,解题关键在于观察图形找到规律.二、填空题(每小题3分,共24分)11、1【解题分析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.【题目详解】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得:,
解得:,
∴L与x之间的函数关系式为:L=2x+15;
当x=4时,L=2×4+15=1(cm)
故重物为4kg时弹簧总长L是1cm,
故答案为1.【题目点拨】吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.12、【解题分析】
根据题意在:上取一点,求出点P到直线:的距离d即可.【题目详解】在:上取一点,
点P到直线:的距离d即为两直线之间的距离:
,
故答案为.【题目点拨】本题考查了两直线平行或相交问题,一次函数的性质,点到直线距离,平行线之间的距离等知识,解题的关键是学会利用公式解决问题,学会用转化的思想思考问题.13、1.【解题分析】∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.∴△DOE的周长="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周长为1.14、或.【解题分析】
根据二次根式有意义的条件可求出x、y的值,代入即可得出结论.【题目详解】∵且,∴,∴,∴或.故答案为:或.【题目点拨】本题考查了二次根式有意义的条件.解答本题的关键由二次根式有意义的条件求出x、y的值.15、m≤3且m≠2【解题分析】试题解析:∵一元二次方程有实数根∴4-4(m-2)≥0且m-2≠0解得:m≤3且m≠2.16、或【解题分析】
利用当AB=10cm,AD=6cm,由于平行四边形的两组对边互相平行,又AE平分∠BAD,由此可以推出所以∠BAE=∠DAE,则DE=AD=6cm;同理可得:CF=CB=6cm,而EF=CF+DE-DC,由此可以求出EF长;同理可得:当AD=10cm,AB=6cm时,可以求出EF长【题目详解】解:如图1,当AB=10cm,AD=6cm∵AE平分∠BAD∴∠BAE=∠DAE,又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED,则AD=DE=6cm同理可得:CF=CB=6cm∵EF=DE+CF-DC=6+6-10=2(cm)如图2,当AD=10cm,AB=6cm,∵AE平分∠BAD,∴∠BAE=∠DAE又∵AD∥CB∴∠EAB=∠DEA,∴∠DAE=∠AED则AD=DE=10cm同理可得,CF=CB=10cmEF=DE+CF-DC=10+10-6=14(cm)故答案为:2或14.图1图2【题目点拨】本题主要考查了角平分线的定义、平行四边形的性质、平行线的性质等知识,关键是平行四边形的不同可能性进行分类讨论.17、4.【解题分析】正方形的性质,全等三角形的判定和性质,矩形的判定和性质,等腰直角三角形的判定和性质,勾股定理.【分析】如图,过O作OF垂直于BC,再过O作OF⊥BC,过A作AM⊥OF,∵四边形ABDE为正方形,∴∠AOB=90°,OA=OB.∴∠AOM+∠BOF=90°.又∵∠AMO=90°,∴∠AOM+∠OAM=90°.∴∠BOF=∠OAM.在△AOM和△BOF中,∵∠AMO=∠OFB=90°,∠OAM=∠BOF,OA=OB,∴△AOM≌△BOF(AAS).∴AM=OF,OM=FB.又∵∠ACB=∠AMF=∠CFM=90°,∴四边形ACFM为矩形.∴AM=CF,AC=MF=2.∴OF=CF.∴△OCF为等腰直角三角形.∵OC=3,∴根据勾股定理得:CF2+OF2=OC2,即2CF2=(3)2,解得:CF=OF=3.∴FB=OM=OF-FM=3-2=4.∴BC=CF+BF=3+4=4.18、8.【解题分析】
根据这组数据的平均数是6,写出平均数的表示式,得到关于x的方程,求出其中x的值,再利用方差的公式,写出方差的表示式,得到结果.【题目详解】∵数据2,6,,10,8的平均数是6,∴∴x=4,∴这组数据的方差是.考点:1.方差;2.平均数.三、解答题(共66分)19、(1)w=0.5x+40;(2)10;(3)该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元【解题分析】
(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意可得等量关系:公司获得的利润w=甲种商品的利润+乙种商品的利润,根据等量关系可得函数关系式;(2)根据资金不多于20万元列出不等式组;(3)根据一次函数的性质:k>0时,w随x的增大而增大可得答案.【题目详解】解:(1)设该公司购进甲种商品x件,则乙种商品(20﹣x)件,根据题意得:w=(14.5﹣12)x+(10﹣8)(20﹣x),整理得:w=0.5x+40;故答案为:w=0.5x+40;(2)由题意得:12x+8(20﹣x)≤200,解得x≤10,故该公司最多购进10台甲种商品;(3)∵对于函数w=0.5x+40,w随x的增大而增大,∴当x=10时,能获得最大利润,最大利润为:w=0.5×10+40=45(万元),故该公司购进甲种商品10件,乙种商品10件时,该公司获得最大利润,最大利润是45万元.【题目点拨】此题主要考查了一次函数的应用,关键是正确理解题意,找出等量关系,列出函数关系式.20、(1)见解析,(2)BF=CG+DF.理由见解析.【解题分析】
(1)由题意可得到∠FBC+∠E=90°,∠CDF+∠E=90°,然后依据余角的性质求解即可;(2)在线段FB上截取FM,使得FM=FD,然后可证明△BDM∽△CDF,由相似三角形的性质可得到BM=FC,然后证明△CFG为等腰直角三角形,从而可得到CG=CF,然后可得到问题的答案.【题目详解】.解:(1)∵ABCD为正方形,∴∠DCE=90°.∴∠CDF+∠E=90°,又∵BF⊥DE,∴∠FBC+∠E=90°,∴∠FBC=∠CDF(2)如图所示:在线段FB上截取FM,使得FM=FD.∵∠BDC=∠MDF=45°,∴∠BDM=∠CDF,∵,∴△BDM∽△CDF,∴,∠DBM=∠DCF,∴BM=CF,∴∠CFE=∠FCD+∠CDF=∠DBM+∠BDM=∠DMF=45°,∴∠EFG=∠EFC=45°,∴∠CFG=90°,∵CF=FG,∴CG=CF,∴BM=CG,∴BF=BM+FM=CG+DF.【题目点拨】本题考查四边形综合题、正方形的性质、等腰直角三角形的判定和性质、相似三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题.21、(1),且;(2)不存在,理由见解析.【解题分析】
(1)根据方程有两个不相等的实数根可知△=,求得k的取值范围;(2)可假设存在实数k,使得方程的两个实数根,的倒数和为0,列出方程即可求得k的值,然后把求得的k值代入原式中看看与已知是否矛盾,如果矛盾则不存在,如果不矛盾则存在.【题目详解】解:(1)∵方程有两个不相等的实数根,∴△=,且,解得,且,即k的取值范围是,且;(2)假设存在实数k,使得方程的两个实数根,的倒数和为0,则,不为0,且,即,且,解得,而与方程有两个不相等实根的条件,且矛盾,故使方程的两个实数根的倒数和为0的实数k不存在.【题目点拨】本题考查根与系数的关系;一元二次方程的定义;根的判别式.22、证明见解析.【解题分析】
根据角平分线的性质和外角等于不相邻两内角和即可求得∠ABD=∠C,可证明△ABD∽△ABC,即可解题.【题目详解】∵平分,∴,∵,∴,∵,,∴,∵,,∴,∴,即:,∵,∴.【题目点拨】本题考查了相似三角形的判定,考查了相似三角形对应边比例相等的性质.23、(1);(2)【解题分析】
(1)将因式分解,然后将a、b的值代入求值即可;(2)根据二次根式有意义的条件,即可求出x和y的值,然后代入求值即可.【题目详解】解:(1)将,代入,得原式====(2)由题意可知:解得∴x=5将x=5代入中,解得:y=2∴的平方根为:【题目点拨】此题考查的是因式分解、二次根式的混合运算、二次根式有意义的条件和求平方根,掌握因式分解的方法、二次根式的运算法则、二次根式有意义的条件和平方根的定义是解决此题的关键.24、50.【解题分析】
解:设该厂原来每
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 简单版工厂转让合同协议2篇
- 2024年度建筑施工沟通协调合同3篇
- 某城市地理环境课件
- 2024年度二手电动车广告投放合同2篇
- 零售店劳动合同范本
- 工程伦理课件下载
- 运维技术服务合同
- 2024年度二七区郭家咀铁三官庙N06地块安置区供排水工程合同2篇
- 公司股东入股合作协议书
- 七年纪上册课件
- GB/T 702-2017热轧钢棒尺寸、外形、重量及允许偏差
- 500kw 新能源储能变流器技术协议书
- 领导干部带班记录
- 《故都的秋》《荷塘月色》联读课件15张-统编版高中语文必修上册
- 人生礼仪习俗课件
- 消防员劳动合同范本(3篇)
- 卫生部手足口病诊疗指南
- DB34-T 2290-2022水利工程质量检测规程-高清现行
- 中国技能大赛第45届世界技能大赛混凝土建筑赛项选拔赛技术文件
- 千古一帝秦始皇-完整版课件
- 焊接返修工艺规程
评论
0/150
提交评论