




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届天津市南开区南开大附属中学数学八下期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是()A.类比思想 B.转化思想 C.方程思想 D.函数思想2.如图,OA=,以OA为直角边作Rt△OAA1,使∠AOA1=30°,再以OA1为直角边作Rt△OA1A2,使∠A1OA2=30°,……,依此法继续作下去,则A1A2的长为()A. B. C. D.3.在平面直角坐标系中,若点Mm,n与点Q-2,3关于原点对称,则点Pm+n,n在A.第一象限 B.第二象限 C.第三象限 D.第四象限4.如图,在平面直角坐标系xOy中,菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行.直线y=x+3与x轴、y轴分别交于点E,F.将菱形ABCD沿x轴向左平移m个单位,当点D落在△EOF的内部时(不包括三角形的边),m的值可能是()A.2 B.3 C.4 D.55.如图,在平面直角坐标系中,四边形ABCD是菱形,点A的坐标为(0,),分别以A,B为圆心,大于AB的长为半径作弧,两弧交于点E,F,直线EF恰好经过点D,则点D的坐标为()A.(2,2) B.(2,) C.(,2) D.(+1,6.已知实数a、b,若a>b,则下列结论正确的是A. B. C. D.7.已知点P(a+l,2a-3)关于x轴的对称点在第一象限,则a的取值范围是()A. B. C. D.8.以下列长度的线段为边,能构成直角三角形的是()A.2,3,4 B.4,5,6 C.8,13,5 D.1,,19.若平行四边形的一边长为7,则它的两条对角线长可以是()A.12和2 B.3和4 C.14和16 D.4和810.当a满足条件()时,式子在实数范围内有意义.A.a<−3 B.a≤−3 C.a>−3 D.a≥−3二、填空题(每小题3分,共24分)11.计算+×的结果是_____.12.在平面直角坐标系中,点P(1,2)关于y轴的对称点Q的坐标是________;13.在菱形ABCD中,∠C=∠EDF=60°,AB=1,现将∠EDF绕点D任意旋转,分别交边AB、BC于点E、F(不与菱形的顶点重合),连接EF,则△BEF的周长最小值是_____.14.计算:(2+)(2-)=_______.15.如图,菱形ABCD的周长为12,∠B=60°,则菱形的面积为_________m216.《九章算术》中的“折竹抵地”问题:今有竹高一丈,末折抵地,去根六尺.问折高者几何?意思是:一根竹子,原高一丈(一丈=10尺),一阵风将竹子折断,其竹梢恰好抵地,抵地处离竹子底部6尺远,问折断处离地面的高度是多少?设折断处离地面的高度为x尺,则可列方程为_______________.17.如图,四边形ABCD是矩形,对角线AC、BD相交于点O,如果再添加一个条件,即可推出该四边形是正方形,这个条件可以是_________.18.如图,一张矩形纸片的长AD=12,宽AB=2,点E在边AD上,点F在边BC上,将四边形ABFE沿直线EF翻折后,点B落在边AD的三等分点G处,则EG的长为_______.三、解答题(共66分)19.(10分)某中学八年级学生到离学校15千米的青少年营地举行庆祝十四岁生日活动,先遣队与大部队同时出发,已知先遣队的行进速度是大部队行进速度的1.2倍,预计先遣队比大部队早0.5小时到达目的地,求先遣队与大部队的行进速度。20.(6分)如图,△ABC为锐角三角形,AD是BC边上的高,正方形EFMN的一边MN在边BC上,顶点E、F分别在AB、AC上,其中BC=24cm,高AD=12cm.(1)求证:△AEF∽△ABC:(2)求正方形EFMN的边长.21.(6分)如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于E.(1)求证:△AFE≌△CDF;(2)若AB=4,BC=8,求图中阴影部分的面积.22.(8分)江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?23.(8分)某厂制作甲、乙两种环保包装盒.已知同样用6m的材料制成甲盒的个数比制成乙盒的个数少2个,且制成一个甲盒比制作一个乙盒需要多用20%的材料.(1)求制作每个甲盒、乙盒各用多少材料?(2)如果制作甲、乙两种包装盒3000个,且甲盒的数量不少于乙盒数量的2倍,那么请写出所需材料总长度与甲盒数量之间的函数关系式,并求出最少需要多少米材料.24.(8分)先化简,再求值:÷(1﹣),请你给x赋予一个恰当的值,并求出代数式的值.25.(10分)某公司销售部有销售人员14人,为提高工作效率和员工的积极性,准备实行“每月定额销售,超额有奖”的措施.调查这14位销售人员某月的销售量,获得数据如下表:月销售量(件)1455537302418人数(人)112532(1)求这14位营销人员该月销售量的平均数和中位数(2)如果你是该公司的销售部管理者,你将如何确定这个定额?请说明理由.26.(10分)解不等式组:,并把它的解集在数轴上表示出来.
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
分式方程去分母转化为整式方程,故利用的数学思想是转化思想.【题目详解】解分式方程时,在方程的两边同时乘以(x﹣1)(x+1),把原方程化为x+1+2x(x﹣1)=2(x﹣1)(x+1),这一变形过程体现的数学思想主要是转化思想.故选B.【题目点拨】此题考查了解分式方程,熟练掌握运算法则是解本题的关键.2、B【解题分析】
由含30°角的直角三角形的性质和勾股定理求出OA1,然后根据30°角的三角函数值求出A1A2即可.【题目详解】解:∵∠OAA1=90°,OA=,∠AOA1=30°,∴AA1=OA1,由勾股定理得:OA2+AA12=OA12,即()2+(OA1)2=OA12,解得:OA1=2,∵∠A1OA2=30°,∴A1A2的长==故选:B.【题目点拨】本题考查了勾股定理、含30°角的直角三角形的性质;熟练掌握勾股定理,通过计算得出规律是解决问题的关键.3、C【解题分析】
直接利用关于关于原点对称点的性质得出m,n的值,进而得出答案.【题目详解】解:∵点M(m,n)与点Q(−2,3)关于原点对称,∴m=2,n=−3,则点P(m+n,n)为(−1,−3),在第三象限.故选:C.【题目点拨】此题主要考查了关于原点对称的点的性质,正确得出m,n的值是解题关键.4、D【解题分析】试题分析:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,由菱形ABCD,根据A与B的坐标确定出C坐标,进而求出CM与CN的值,确定出当点C落在△EOF的内部时k的范围,即可求出k的可能值.解:连接AC,BD,交于点Q,过C作y轴垂线,交y轴于点M,交直线EF于点N,如图所示,∵菱形ABCD的顶点A的坐标为(2,0),点B的坐标为(0,1),点C在第一象限,对角线BD与x轴平行,∴CQ=AQ=1,CM=2,即AC=2AQ=2,∴C(2,2),当C与M重合时,k=CM=2;当C与N重合时,把y=2代入y=x+4中得:x=﹣2,即k=CN=CM+MN=4,∴当点C落在△EOF的内部时(不包括三角形的边),k的范围为2<k<4,则k的值可能是3,故选B5、B【解题分析】
连接DB,如图,利用基本作图得到EF垂直平分AB,则DA=DB,再根据菱形的性质得到AD∥BC,AD=AB,则可判断△ADB为等边三角形,所以∠DAB=∠ABO=60°,然后计算出AD=2,从而得到D点坐标.【题目详解】连接DB,如图,由作法得EF垂直平分AB,∴DA=DB,∵四边形ABCD是菱形,∴AD∥BC,AD=AB,∴AD=AB=DB,∴△ADB为等边三角形,∴∠DAB=60°,∴∠ABO=60°,∵A(0,),∴OA=,∴OB=OA=1,AB=2OB=2,∴AD=AB=2,而AD平行x轴,∴D(2,).故选:B.【题目点拨】考查了作图﹣基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了线段垂直平分线的性质和菱形的性质6、D【解题分析】
不等式的两边同时加上或减去一个数,不等号的方向不变,不等式的两边同时除以或乘以一个正数,不等号的方向也不变,所以A、B、C错误,D正确.故选D.7、B【解题分析】关于x轴对称的点的坐标,一元一次不等式组的应用.【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”,再根据各象限内的点的坐标的特点列出不等式组求解即可:∵点P(a+1,2a-3)关于x轴的对称点在第一象限,∴点P在第四象限.∴.解不等式①得,a>-1,解不等式②得,a<,所以,不等式组的解集是-1<a<.故选B.8、D【解题分析】
欲求证是否为直角三角形,这里给出三边的长,只要验证两小边的平方和等于最长边的平方即可.【题目详解】解:A、因为22+32≠42,所以不能组成直角三角形;B、因为52+42≠62,所以不能组成直角三角形;C、因为52+82≠132,所以不能组成直角三角形;D、因为12+12=()2,所以能组成直角三角形.故选:D.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、C【解题分析】
平行四边形的长为7的一边,与对角线的交点,构成的三角形的另两边应满足三角形的三边关系,即两边之和大于第三边,两边之差小于第三边.设两条对角线的长度分别是x、y,即三角形的另两边分别是x、y,那么得到不等式组,解得,所以符合条件的对角线只有14,1.【题目详解】解:如图,▱ABCD中,AB=7,设两条对角线AC、BD的长分别是x,y.∵四边形ABCD为平行四边形,∴OA=OC,OB=OD∴OA=x,OB=y,∴在△AOB中,,即:,解得:,将四个选项分别代入方程组中,只有C选项满足.故选:C.【题目点拨】本题考查平行四边形的性质以及三角形的三边关系定理,根据三角形的三边关系,确定出对角线的长度范围是解题的关键,有一定的难度.10、D【解题分析】
根据二次根式有意义的条件是被开方数大于等于0,即可求得答案.【题目详解】解:根据题意知,要使在实数范围内有意义.则,解得:,故选:D.【题目点拨】本题主要考查二次根式的意义,掌握二次根式中被开方数为非负数是解题的关键.二、填空题(每小题3分,共24分)11、.【解题分析】原式===,故答案为.【题目点拨】本题考查了二次根式的混合运算,准确地对每一个二次根式进行化简,熟练运算法则是解题的关键.12、(-1,2)【解题分析】
关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.【题目详解】关于y轴对称的两点坐标特点:横坐标互为相反数,纵坐标相同.故Q坐标为(-1,2).故答案为:(-1,2).【题目点拨】此题考查的是关于y轴对称的两点坐标的特点,掌握两点关于坐标轴或原点对称坐标特点是解决此题的关键.13、1+【解题分析】
连接BD,根据菱形的性质得到AD=AB=BC=CD,∠C=∠A=60°,由等边三角形的判定定理即可得到结论;△ABD和△CBD都是等边三角形,于是得到∠EBD=∠DBC=∠C=60°,BD=CD证得∠EDB=∠FDC,根据全等三角形的性质得到DE=DF,BE=CF,证明△DEF是等边三角形,根据等边三角形的性质得到DF=EF,得到BF+BE=BF+CF=1,得到当DF⊥BC时,求得,△BEF的周长取得最小值.【题目详解】连接BD,∵四边形ABCD是菱形,∴AD=AB=BC=CD,∠C=∠A=60°,∴△ABD和△CBD都是等边三角形;∴∠EBD=∠DBC=∠C=60°,BD=CD,∵∠EDF=60°,∴∠EDB=∠FDC,在△BDE与△CDF中,∴△BDE≌△CDF,∴DE=DF,BE=CF,∴△DEF是等边三角形;∴EF=DF,∴BF+BE=BF+CF=1,当DF⊥BC时,此时△DEF的周长取得最小值,∴△DEF的周长的最小值为:故答案为:【题目点拨】考查菱形的性质,等边三角形的判定与性质,全等三角形的判定与性质,解直角三角形等,掌握菱形的性质是解题的关键.14、1【解题分析】
根据实数的运算法则,利用平方差公式计算即可得答案.【题目详解】(2+)(2-)=22-()2=4-3=1.故答案为:1【题目点拨】本题考查实数的运算,熟练掌握运算法则并灵活运用平方差公式是解题关键.15、【解题分析】
首先根据已知求得菱形的边长,再根据勾股定理求得其两条对角线的长,进而求出菱形的面积.【题目详解】解:菱形的周长为12,菱形的边长为3,四边形是菱形,且,为等边三角形,,,,菱形的面积,故答案为【题目点拨】本题主要考查了菱形的性质,解题的关键是熟练掌握菱形的面积等于对角线乘积的一般,此题难度不大.16、x1+61=(10-x)1【解题分析】
根据题意画出图形,由题意则有AC=x,AB=10﹣x,BC=6,根据勾股定理即可列出关于x的方程.【题目详解】根据题意画出图形,折断处离地面的高度为x尺,则AB=10﹣x,BC=6,在Rt△ABC中,AC1+BC1=AB1,即x1+61=(10﹣x)1,故答案为x1+61=(10﹣x)1.【题目点拨】本题考查了勾股定理的应用,正确画出图形,熟练掌握勾股定理的内容是解题的关键.17、AC⊥BD【解题分析】
对角线互相垂直的矩形是正方形,根据正方形的判定定理添加即可.【题目详解】∵四边形ABCD是矩形,对角线AC、BD相交于点O,∴当AC⊥BD时,四边形ABCD是正方形,故答案为:AC⊥BD.【题目点拨】此题考查正方形的判定定理,熟记定理并运用解题是关键.18、或【解题分析】
如图,作GH⊥BC于H.则四边形ABHG是矩形.G是AD的三等分点,推出AG=4或8,证明EG=FG=FB,设EG=FG=FB=x,分两种情形构建方程即可解决问题.【题目详解】解:如图,作GH⊥BC于H.则四边形ABHG是矩形.
∵G是AD的三等分点,
∴AG=4或8,
由翻折可知:FG=FB,∠EFB=∠EFG,设FG=FB=x.
∵AD∥BC,
∴∠FEG=∠EFB=∠GFE,
∴EG=FG=x,
在Rt△FGH中,∵FG2=GH2+FH2,
∴x2=22+(4-x)2或x2=22+(8-x)2
解得:x=或,
故答案为或.【题目点拨】本题考查翻折变换,矩形的性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.三、解答题(共66分)19、大部队的行进速度为5千米/时,先遣队的行进速度为6千米/时【解题分析】【分析】设大部队的行进速度为x千米/时,则先遣队的行进速度为1.2x千米/时.由“先遣队比大部队早0.5小时到达目的地”,即时间关系可以列出,求解可得.【题目详解】设大部队的行进速度为x千米/时,则先遣队的行进速度为1.2x千米/时.根据题意,可列出方程.解得
.经检验,
是原方程的根,且符合题意.当
时,答:大部队的行进速度为5千米/时,先遣队的行进速度为6千米/时【题目点拨】本题考核知识点:列分式方程解应用题.解题关键点:根据时间差关系列出方程.20、(1)详见解析;(2)正方形的边长为8cm.【解题分析】
(1)根据两角对应相等的两个三角形相似即可证明;
(2)利用相似三角形的性质,构建方程即可解决问题;【题目详解】(1)证明:∵四边形EFMN是正方形,∴EF∥BC,∴∠AEF=∠B,∠AFE=∠C,∴△AEF∽△ABC.(2)解:设正方形EFMN的边长为xcm.∴AP=AD-x=12-x(cm)∵△AEF∽△ABC,AD⊥BC,∴,∴,∴x=8,∴正方形的边长为8cm.【题目点拨】本题考查相似三角形的判定和性质、正方形的性质等知识,解题的关键是熟练掌握基本知识.21、(1)证明见解析;(2)1.【解题分析】试题分析:(1)根据矩形的性质得到AB=CD,∠B=∠D=90°,根据折叠的性质得到∠E=∠B,AB=AE,根据全等三角形的判定定理即可得到结论;(2)根据全等三角形的性质得到AF=CF,EF=DF,根据勾股定理得到DF=3,根据三角形的面积公式即可得到结论.试题解析:(1)∵四边形ABCD是矩形,∴AB=CD,∠B=∠D=90°,∵将矩形ABCD沿对角线AC翻折,点B落在点E处,∴∠E=∠B,AB=AE,∴AE=CD,∠E=∠D,在△AEF与△CDF中,∵∠E=∠D,∠AFE=∠CFD,AE=CD,∴△AEF≌△CDF;(2)∵AB=4,BC=8,∴CE=AD=8,AE=CD=AB=4,∵△AEF≌△CDF,∴AF=CF,EF=DF,∴DF2+CD2=CF2,即DF2+42=(8﹣DF)2,∴DF=3,∴EF=3,∴图中阴影部分的面积=S△ACE﹣S△AEF=×4×8﹣×4×3=1.点睛:本题考查了翻折变换﹣折叠的性质,熟练掌握折叠的性质是解题的关键.22、(1)y甲=0.8x(x≥0),;(2)当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6000元时,到甲、乙两商店购买花钱一样.【解题分析】
(1)利用待定系数法即可求出y甲,y乙关于x的函数关系式;(2)当0<x<2000时,显然到甲商店购买更省钱;当x≥2000时,分三种情况进行讨论即可.【题目详解】(1)设y甲=kx,把(2000,1600)代入,得2000x=1600,解得k=0.8,所以y甲=0.8x(x≥0);当0<x<2000时,设y乙=ax,把(2000,2000)代入,得2000x=2000,解得k=1,所以y乙=x;当x≥2000时,设y乙=mx+n,把(2000,2000),(4000,3400)代入,得:,解得:.所以;(2)当0<x<2000时,0.8x<x,到甲商店购买更省钱;当x≥2000时,若到甲商店购买更省钱,则0.8x<0.7x+600,解得x<6000;若到乙商店购买更省钱,则0.8x>0.7x+600,解得x>6000;若到甲、乙两商店购买一样省钱,则0.8x=0.7x+600,解得x=6000;故当购买金额按原价小于6000元时,到甲商店购买更省钱;当购买金额按原价大于6000元时,到乙商店购买更省钱;当购买金额按原价等于6
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论