2024届甘肃省武威市民勤六中学数学八下期末综合测试试题含解析_第1页
2024届甘肃省武威市民勤六中学数学八下期末综合测试试题含解析_第2页
2024届甘肃省武威市民勤六中学数学八下期末综合测试试题含解析_第3页
2024届甘肃省武威市民勤六中学数学八下期末综合测试试题含解析_第4页
2024届甘肃省武威市民勤六中学数学八下期末综合测试试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省武威市民勤六中学数学八下期末综合测试试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.下列图形中,是轴对称图形的是()A. B. C. D.2.将直线y=2x-3向右平移2个单位。再向上平移2个单位后,得到直线y=kx+b.则下列关于直线y=kx+b的说法正确的是()A.与y轴交于(0,-5) B.与x轴交于(2,0)C.y随x的增大而减小 D.经过第一、二、四象限3.已知四个三角形分别满足下列条件:①一个内角等于另两个内角之和;②三个内角度数之比为3∶4∶5;③三边长分别为7,24,25;④三边长之比为5∶12∶13.其中直角三角形有()A.1个 B.2个 C.3个 D.4个4.计算()A.7 B.-5 C.5 D.-75.下列交通标志是轴对称图形的是()A. B. C. D.6.代数式在实数范围内有意义,则的取值范围是()A. B. C. D.7.下列图形是物理学中的力学、电学等器件的平面示意图,从左至右分别代表小车、音叉、凹透镜和砝码,其中是中心对称图形的是()A. B. C. D.8.如图是小军设计的一面彩旗,其中,,点在上,,则的长为()A. B. C. D.9.如图,在中,点、分别是、的中点,平分,交于点,若,则的长是()A. B. C. D.10.如图,矩形中,对角线交于点.若,则的长为()A. B. C. D.11.若关于x的一元二次方程(k-1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是()A.k<5 B.k<5,且k≠1 C.k≤5,且k≠1 D.k>512.二次根式在实数范围内有意义,则x应满足的条件是(

)A.x≥1 B.x>1 C.x>﹣1 D.x≥﹣1二、填空题(每题4分,共24分)13.若二次根式在实数范围内有意义,则实数x的取值范围是_____.14.一个n边形的内角和是720°,则n=_____.15.若,则_____.16.已知如图,以的三边为斜边分别向外作等腰直角三角形,若斜边,则图中阴影部分的面积为_______.17.如图,已知中,,将绕点A逆时针方向旋转到的位置,连接,则的长为__________.18.若正多边形的一个内角等于,则这个多边形的边数是__________.三、解答题(共78分)19.(8分)进入夏季用电高峰季节,市供电局维修队接到紧急通知:要到30千米远的某乡镇进行紧急抢修,维修工骑摩托车先走,15分钟后,抢修车装载所需材料出发,结果两车同时到达抢修点,已知抢修车的速度是摩托车速度的1.5倍,求两种车的速度.20.(8分)在平面直角坐标系中,直线()与直线相交于点P(2,m),与x轴交于点A.(1)求m的值;(2)过点P作PB⊥x轴于B,如果△PAB的面积为6,求k的值.21.(8分)为了响应“足球进学校”的号召,某学校准备到体育用品批发市场购买A型号与B型号两种足球,其中A型号足球的批发价是每个200元,B型号足球的批发价是每个250元,该校需购买A,B两种型号足球共100个.(1)若该校购买A,B两种型号足球共用了22000元,则分别购买两种型号足球多少个?(2)若该校计划购进A型号足球的数量不多于B型号足球数量的9倍,请求出最省钱的购买方案,并说明理由22.(10分)如图,在四边形中,,,,点是的中点.点以每秒1个单位长度的速度从点出发,沿向点运动;同时,点以每秒2个单位长度的速度从点出发,沿向点运动.点停止运动时,点也随之停止运动.求当运动时间为多少秒时,以点,,,为顶点的四边形是平行四边形.23.(10分)已知x、y满足方程组,求代数式的值.24.(10分)在2019年春季环境整治活动中,某社区计划对面积为的区域进行绿化.经投标,由甲、乙两个工程队来完成,若甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为区域的绿化时,甲队比乙队少用5天.(1)求甲、乙两工程队每天能完成绿化的面积;(2)设甲工程队施工天,乙工程队施工天,刚好完成绿化任务,求关于的函数关系式;(3)在(2)的条件下,若甲队每天绿化费用是0.6万元,乙队每天绿化费用为0.25万元,且甲乙两队施工的总天数不超过25天,则如何安排甲乙两队施工的天数,使施工总费用最低?并求出最低费用.25.(12分)某移动通信公司推出了如下两种移动电话计费方式,月使用费/元主叫限定时间/分钟主叫超时费(元/分钟)方式一306000.20方式二506000.25说明:月使用费固定收取,主叫不超过限定时间不再收费,超过部分加收超时费.例如,方式一每月固定交费30元,当主叫计时不超过300分钟不再额外收费,超过300分钟时,超过部分每分钟加收0.20元(不足1分钟按1分钟计算)(1)请根据题意完成如表的填空;月主叫时间500分钟月主叫时间800分钟方式一收费/元130方式二收费/元50(2)设某月主叫时间为t(分钟),方式一、方式二两种计费方式的费用分别为y1(元),y2(元),分别写出两种计费方式中主叫时间t(分钟)与费用为y1(元),y2(元)的函数关系式;(3)请计算说明选择哪种计费方式更省钱.26.某社区计划对面积为1200m2的区域进行绿化.经投标,由甲、乙两个工程队来完成,已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的2倍,并且在独立完成面积为400m2区域的绿化时,甲队比乙队少用4天.(1)甲、乙两施工队每天分别能完成绿化的面积是多少?(2)设先由甲队施工x天,再由乙队施工y天,刚好完成绿化任务,求y与x的函数解析式;(3)在(2)的情况下,若甲队绿化费用为1600元/天,乙队绿化费用为700元/天,在施工过程中每天需要支付高温补贴a元(100≤a≤300),且工期不得超过14天,则如何安排甲,乙两队施工的天数,使施工费用最少?

参考答案一、选择题(每题4分,共48分)1、B【解题分析】

轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能完全重合,根据轴对称图形的概念对各选项分析判断即可得解.【题目详解】解:A、不符合定义,不是轴对称图形,故本选项错误;B、符合定义是轴对称图形,故本选项正确;C、不符合定义,不是轴对称图形,故本选项错误;D、不符合定义,不是轴对称图形,故本选项错误.故选:B.【题目点拨】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、A【解题分析】

利用一次函数图象的平移规律,左加右减,上加下减,得出即可.【题目详解】直线y=2x-3向右平移2个单位得y=2(x-2)-3,即y=2x-7;再向上平移2个单位得y=2x-7+2,即y=2x-5,A.当x=0时,y=-5,与y轴交于(0,-5),本项正确,B.当y=0时,x=,与x轴交于(,0),本项错误;C.2>0y随x的增大而增大,本项错误;D.2>0,直线经过第一、三象限,-5<0直线经过第四象限,本项错误;故选A.【题目点拨】此题主要考查了一次函数图象与几何变换,正确把握变换规律是解题关键.3、C【解题分析】①已知∠A=∠B+∠C,由∠A+∠B+∠C=180°,得2∠A=180°,所以∠A=90°,它是直角三角形;②三个内角之比为3∶4∶1.则这三个内角分别为41°,60°,71°,它是锐角三角形;③④可由勾股定理的逆定理判定是直角三角形.因此①③④是直角三角形,故选C.4、C【解题分析】

利用最简二次根式的运算即可得.【题目详解】故答案为C【题目点拨】本题考查二次根式的运算,掌握同类二次根式的运算法则及分母有理化是解题的关键.5、C【解题分析】试题分析:A、不是轴对称图形,故此选项错误;B、不是轴对称图形,故此选项错误;C、是轴对称图形,故此选项正确;D、不是轴对称图形,故此选项错误.故选C.点睛:此题主要考查了轴对称图形的概念.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴,这时,我们也可以说这个图形关于这条直线(成轴)对称.6、C【解题分析】

直接根据二次根式被开方数为非负数解题即可.【题目详解】由题意得:,∴.故选:C.【题目点拨】本题主要考查了二次根式的性质,熟练掌握相关性质是解题关键.7、C【解题分析】

根据中心对称图形的定义,结合选项所给图形进行判断即可.【题目详解】解:A、不是中心对称图形,故本选项错误;B、不是中心对称图形,故本选项错误;C、是中心对称图形,故本选项正确;D、不是中心对称图形,故本选项错误;故选:C.【题目点拨】此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、B【解题分析】

先求出∠ABD=∠D,然后根据三角形的一个外角等于与它不相邻的两个内角的和求出∠BAC=30°,然后根据30°所对的直角边等于斜边的一半求出BC的长度是2cm,再利用勾股定理解答.【题目详解】解:如图,∵AD=AB=4cm,∠D=15°,∴∠ABD=∠D=15°,∴∠BAC=∠ABD+∠D=30°,∵∠ACB=90°,AB=4cm,,在Rt△ABC中,,故选:B.【题目点拨】本题主要考查了含30度角的直角三角形的边的关系,等腰三角形的等边对等角的性质,三角形的外角性质,熟练掌握性质定理是解题的关键.9、B【解题分析】

先证明DE是中位线,由此得到DE∥AB,再根据角平分线的性质得到DF=BD,由此求出答案.【题目详解】∵点、分别是、的中点,∴DE是△ABC的中位线,BD=BC=3,∴DE∥AB,∴∠ABF=∠DFB,∵平分,∴∠ABF=∠CBF,∴∠DFB=∠CBF,∴BD=FD,∴DF=3,故选:B.【题目点拨】此题考查三角形的中位线定理,等腰三角形的性质,角平分线的性质,熟记定理并运用解题是关键.10、B【解题分析】

由四边形ABCD为矩形,根据矩形的对角线互相平分且相等,可得OA=OB=4,又∠AOB=60°,根据有一个角为60°的等腰三角形为等边三角形可得三角形AOB为等边三角形,根据等边三角形的每一个角都相等都为60°可得出∠BAO为60°,据此即可求得AB长.【题目详解】∵在矩形ABCD中,BD=8,∴AO=AC,BO=BD=4,AC=BD,∴AO=BO,又∵∠AOB=60°,∴△AOB是等边三角形,∴AB=OB=4,故选B.【题目点拨】本题考查了矩形的性质,等边三角形的判定与性质,熟练掌握矩形的对角线相等且互相平分是解本题的关键.11、B【解题分析】试题解析:∵关于x的一元二次方程方程有两个不相等的实数根,∴,即,解得:k<5且k≠1.故选B.12、A【解题分析】

二次根式在实数范围内有意义的条件是被开方数大于等于0,据此列不等式求出x的范围即可.【题目详解】由题意得:x-1≥0,则x≥1

,故答案为:A.【题目点拨】本题考查二次根式有意义的条件,属于简单题,基础知识扎实是解题关键.二、填空题(每题4分,共24分)13、x<1【解题分析】

直接利用二次根式有意义的条件分析得出答案.【题目详解】解:∵二次根式在实数范围内有意义,∴1﹣x>0,解得:x<1.故答案为:x<1.【题目点拨】此题主要考查了二次根式有意义的条件,正确把握定义是解题关键.14、1【解题分析】

多边形的内角和可以表示成(n-2)•180°,依此列方程可求解.【题目详解】依题意有:(n﹣2)•180°=720°,解得n=1.故答案为:1.【题目点拨】本题考查根据多边形的内角和计算公式求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.15、【解题分析】分析:由题干可得b=,然后将其代入所求的分式解答即可.详解:∵的两内项是b、1,两外项是a、2,∴b=,∴=.故本题的答案:.点睛:比例的性质.16、50【解题分析】

根据勾股定理和等腰直角三角形的面积公式,可以证明:以直角三角形的两条直角边为斜边的等腰直角三角形的面积和等于以斜边为斜边的等腰直角三角形的面积.则阴影部分的面积即为以斜边为斜边的等腰直角三角形的面积的2倍.【题目详解】解:在Rt△ABC中,AB2=AC2+BC2,AB=5,S阴影=S△AHC+S△BFC+S△AEB==50故答案为:50.【题目点拨】本题考查了勾股定理的知识,要求能够运用勾股定理证明三个等腰直角三角形的面积之间的关系.17、【解题分析】

连接交于D,中,根据勾股定理得,,根据旋转的性质得:垂直平分为等边三角形,分别求出,根据计算即可.【题目详解】如图,连接交于D,如图,中,∵,∴,∵绕点A逆时针方向旋转到的位置,∴,∴垂直平分为等边三角形,∴,∴.故答案为:.【题目点拨】考查等腰直角三角形的性质,等边三角形的判定与性质,旋转的性质等,18、十【解题分析】

根据正多边形的每个内角相等,可得正多边形的内角和,再根据多边形的内角和公式,可得答案.【题目详解】解:设正多边形是n边形,由题意得(n−2)×180°=144°×n.解得n=10,故答案为:十.【题目点拨】本题考查了多边形的内角,利用了正多边形的内角相等,多边形的内角和公式.三、解答题(共78分)19、摩托车的速度是40km/h,抢修车的速度是60km/h.【解题分析】

设摩托车的是xkm/h,那么抢修车的速度是1.5xkm/h,根据供电局的电力维修工要到30千米远的郊区进行电力抢修.技术工人骑摩托车先走,15分钟后,抢修车装载着所需材料出发,结果他们同时到达可列方程求解.【题目详解】设摩托车的是xkm/h,x=40经检验x=40是原方程的解.40×1.5=60(km/h).摩托车的速度是40km/h,抢修车的速度是60km/h.【题目点拨】此题考查分式方程的应用,解题关键在于理解题意列出方程.20、(1)m=4;(2)【解题分析】

(1)把点P(2,m)代入直线y=2x可求m的值;(2)先求得PB=4,根据三角形面积公式可求AB=1,可得A1(5,0),A2(-1,0),再根据待定系数法可求k的值.【题目详解】(1)∵直线过点P(2,m),∴m=4(2)∵P(2,4),∴PB=4又∵△PAB的面积为6,∴AB=1.∴A1(5,0),A2(-1,0)当直线经过A1(5,0)和P(2,4)时,可得k=当直线经过A2(-1,0)和P(2,4)时,可得k=.综上所述,k=.【题目点拨】本题主要考查一次函数的交点问题,根据三角形面积间的关系得出点A的坐标及熟练掌握待定系数法求函数解析式是解题的关键.21、(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.【解题分析】

(1)设购买A型号足球x个,B型号足球y个,根据总价=单价×数量,结合22000元购买A,B两种型号足球共100个,即可得出关于x,y的二元一次方程组,解之即可得出结论;

(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据总价=单价×数量可得出w关于m的函数关系式,由购进A型号足球的数量不多于B型号足球数量的9倍可得出关于m的一元一次不等式,解之即可得出m的取值范围,再利用一次函数的性质即可解决最值问题.【题目详解】解:(1)设购买A型号足球x个,B型号足球y个,依题意,得解之得答:该校购买A型号足球60个,B型号足球40个;(2)设购买A型号足球m个,总费用为w元,则购买B型号足球(100-m)个,根据题意得w=200m+250(100-m)=-50m+25000又∵m≤9(100-m);∴0<m≤90或(m≤90)∵K=-50<0∴w随m的増大而減小∴当m=90肘w最小∴最省钱的购买方案为:A型足球90个,B型足球10个.故答案为:(1)该校购买A型号足球60个,B型号足球40个;(2)最省钱的购买方案为:A型足球90个,B型足球10个.【题目点拨】本题考查二元一次方程组的应用、一次函数的性质以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据数量之间的关系,找出w关于m的函数关系式.22、t为2或秒【解题分析】

由已知以点P,Q,E,D为顶点的四边形是平行四边形有两种情况,(1)当Q运动到E和C之间,(2)当Q运动到E和B之间,根据平行四边形的判定,由AD∥BC,所以当PD=QE时为平行四边形.根据此设运动时间为t,列出关于t的方程求解.【题目详解】解:由题意可知,AP=t,CQ=2t,CE=BC=8∵AD∥BC,∴当PD=EQ时,以点P,Q,E,D为顶点的四边形是平行四边形.①当2t<8,即t<4时,点Q在C,E之间,如图甲.此时,PD=AD-AP=6-t,EQ=CE-CQ=8-2t,由6-t=8-2t,得t=2;②当8<2t<16且t<6,即4<t<6时,点Q在B,E之间,如图乙.此时,PD=AD-AP=6-t,EQ=CQ-CE=2t-8,由6-t=2t-8,得t=∴当运动时间t为2或秒时,以点P,Q,E,D为顶点的四边形是平行四边形.【题目点拨】此题主要考查了梯形及平行四边形的性质,关键是由已知明确有两种情况,不能漏解.23、【解题分析】

原式利用平方差公式,完全平方公式化简,去括号合并得到最简结果,求出方程组的解得到x与y的值,代入计算即可求出值.【题目详解】原式=(x2-2xy+y2)-(x2-4y2)=x2-2xy+y2-x2+4y2=-2xy+5y2,方程组,①+②得:3x=-3,即x=-1,把x=-1代入①得:y=,则原式=.【题目点拨】此题考查了代数式求值,以及解二元一次方程组,熟练掌握运算法则是解本题的关键.24、(1)甲、乙两工程队每天能完成绿化面积分别为和;(2);(3)甲工程队施工15天,乙工程队施工10天,则施工总费用最低,最低费用为11.5万.【解题分析】

(1)设出两队的每天绿化的面积,以两队工作时间为等量构造分式方程;(2)以(1)为基础表示甲乙两队分别工作x天、y天的工作总量,工作总量和为1600;(3)用甲乙两队施工的总天数不超过25天确定自变量x取值范围,用x表示总施工费用,根据一次函数增减性求得最低费用.【题目详解】解:(1)设乙工程队每天能完成绿化的面积为,则甲工程队每天能完成绿化面积为.依题意得:,解得经检验:是原方程的根.答:甲、乙两工程队每天能完成绿化面积分别为和.(2)由(1)得:(3)由题意可知:即解得总费用值随值的增大而增大.当天时,答:甲工程队施工15天,乙工程队施工10天,则施工总费用最低,最低费用为11.5万.【题目点拨】此题考查一次函数的应用,分式方程的应用,解题关键在于理解题意列出方程.

错因分析:中等题.失分的原因是:1.不能根据题意正确列出方程,解方程时出错;2.没有正确找出一次函数关系;3.不能利用一次函数的增减性求最小值;4.答题过程不规范,解方程后忘记检验.

25、(1)70;100;(2)详见解析;(3)当0≤t≤400时方式一省钱;当400<t≤1400时,方式二省钱,当t>1400时,方式一省钱,当为400分钟、1400分钟时,两种方式费用相同.【解题分析】

(1)根据题意得出表中数据即可;(2)根据分段计费的费用就可以得出各个时段各种不同的付费方法就可以得出结论;(3)分别求出几种情况下时x的取值范围,根据x的取值范围即可选择计费方式.【题目详解】解:(1)由题意可得:月主叫时间500分钟时,方式一收费为70元;月主叫时间800分钟时,方式二收费为100元,故答案为:70;100;(2)由题意可得:y1(元)的函数关系式为:;y2(元)的函数关系式为:;(3)①当0≤t≤300时方式一更省钱;②当300<t≤600时,若两种方式费用相同,则当0.2t﹣30=50,解得:t=400,即当t=400,两种方式费用相同,当300<t≤400时方式一省钱,当400<t≤600时,方式二省钱;③当t>600时,若两种方式费用相同,则当0.2t﹣30=0.25t﹣100,解得:t=1400,即当t=1400,两种方式费用

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论