江西省九江市修水县2024届八年级数学第二学期期末调研模拟试题含解析_第1页
江西省九江市修水县2024届八年级数学第二学期期末调研模拟试题含解析_第2页
江西省九江市修水县2024届八年级数学第二学期期末调研模拟试题含解析_第3页
江西省九江市修水县2024届八年级数学第二学期期末调研模拟试题含解析_第4页
江西省九江市修水县2024届八年级数学第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省九江市修水县2024届八年级数学第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.今年我市某县6月1日到10日的每一天最高气温变化如折线图所示,则这10个最高气温的中位数和众数分别是()A.33℃33℃ B.33℃32℃ C.34℃33℃ D.35℃33℃2.如图,菱形ABCD中,点E,F分别是AC,DC的中点,若EF=3,则菱形ABCD的周长是()A.12 B.16 C.20 D.243.如图,点M是正方形ABCD边CD上一点,连接AM,作DE⊥AM于点E,作BF⊥AM于点F,连接BE.若AF=1,四边形ABED的面积为6,则BF的长为()A.2 B.3 C. D.4.关于二次函数y=﹣2x2+1,以下说法正确的是()A.开口方向向上 B.顶点坐标是(﹣2,1)C.当x<0时,y随x的增大而增大 D.当x=0时,y有最大值﹣5.八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,已知汽车的速度是骑车学生速度的2倍.设骑车学生的速度为x千米/小时,则所列方程正确的是()A.-=20 B.-=20 C.-= D.=6.已知y=m+3xm2-8是正比例函数,则A.8 B.4 C.±3 D.37.已知四边形ABCD是平行四边形,下列结论中不正确的是()A.当AB=BC时,四边形ABCD是菱形 B.当AC⊥BD时,四边形ABCD是菱形C.当AC=BD时,四边形ABCD是矩形 D.当∠ABC=90°时,四边形ABCD是正方形8.下列命题中:①两直角边对应相等的两个直角三角形全等;②两锐角对应相等的两个直角三角形全等;③斜边和一直角边对应相等的两个直角三角形全等;④一锐角和斜边对应相等的两个直角三角形全等;⑤一锐角和一边对应相等的两个直角三角形全等.其中正确的个数有()A.2个 B.3个 C.4个 D.5个9.如图,正方形ABCD的边长为8,点M在边DC上,且,点N是边AC上一动点,则线段的最小值为A.8B.C.D.1010.若,则=()A. B. C. D.无法确定11.如果是任意实数,下列各式中一定有意义的是()A. B. C. D.12.张老师和李老师住在同一个小区,离学校3000米,某天早晨,张老师和李老师分别于7点5分、7点15分离家骑自行车上班,刚好在校门口相遇,已知李老师骑车的速度是张老师的1.2倍,为了求他们各自骑自行车的速度,设张老师骑自行车的速度是米/分,则可列得方程为()A. B. C. D.二、填空题(每题4分,共24分)13.小刚和小丽从家到运动场的路程都是,其中小丽走的是平路,骑车速度是.小刚需要走上坡路和的下坡路,在上坡路上的骑车速度是,在下坡路上的骑车速度是.如果他们同时出发,那么早到的人比晚到的人少用_________.(结果化为最简)14.如图,在正方形ABCD中,AB=8,E是BC的中点,点P是对角线AC上一动点,则PE+PB的最小值为_____.15.张老师带领x名学生到某动物园参观,已知成人票每张10元,学生票每张5元,设门票的总费用为y元,则y=.16.已知x+y=,xy=,则x2y+xy2的值为____.17.如图,正方形的定点与正方形的对角线交点重合,正方形和正方形的边长都是,则图中重叠部分的面积是__________.18.在平面直角坐标系中,点在第________象限.三、解答题(共78分)19.(8分)如图(1),ΔABC为等腰三角形,AB=AC=a,P点是底边BC上的一个动点,PD∕∕AC,PE∕∕AB.(1)用a表示四边形ADPE的周长为;(2)点P运动到什么位置时,四边形ADPE是菱形,请说明理由;(3)如果ΔABC不是等腰三角形图(2),其他条件不变,点P运动到什么位置时,四边形ADPE是菱形(不必说明理由).20.(8分)已知:如图在平行四边形ABCD中,过对角线BD的中点O作直线EF分别交DA的延长线、AB、DC、BC的延长线于点E、M、N、F.(1)观察图形并找出一对全等三角形:△_≌△_,请加以证明;(2)在(1)中你所找出的一对全等三角形,其中一个三角形可由另一个三角形经过怎样的变换得到?21.(8分)某工厂现有甲种原料360kg,乙种原料290kg,计划利用这两种原料生产A,B两种产品共50件.已知生产1件A种产品,需要甲种原料9kg,乙种原料3kg,可获利润700元;生产1件B种产品,需要甲种原料4kg,乙种原料10kg,可获利润1200元.(1)按要求安排A,B两种产品的生产件数,有哪几种方案?请设计出来.(2)设生产A,B两种产品所获总利润为y(元),其中一种产品的生产件数为x,试写出y关于x的函数解析式,并利用函数的性质说明(1)中哪种生产方案所获总利润最大,最大利润是多少.22.(10分)如图,△ABC三个顶点的坐标分别为A(1,1),B(4,2),C(3,4).(1)请画出将△ABC向左平移4个单位长度后得到的图形△A1B1C1;(2)请画出△ABC关于原点O成中心对称的图形△A2B2C2;(3)在x轴上找一点P,使PA+PB的值最小,请直接写出点P的坐标.23.(10分)有这样一个问题:探究函数的图象与性质.小亮根据学习函数的经验,对函数的图象与性质进行了探究。下面是小亮的探究过程,请补充完整:(1)函数中自变量x的取值范围是_________.(2)下表是y与x的几组对应值.x…-3-2-102345…y…---4-5-7m-1-2--…求m的值;(3)在平面直角坐标系xOy中,描出了以上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(4)根据画出的函数图象,发现下列特征:该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线_________越来越靠近而永不相交.24.(10分)如图所示,在中,,,,点从点出发沿方向以每秒2个单位长度的速度向点匀速运动,同时点从点出发沿方向以每秒1个单位长度的速度向点匀速运动,当其中一点到达终点时,另一个点也随之停止运动.设点、运动的时间是秒,过点作于点,连接、.(1)求证:;(2)四边形能够成为菱形吗?若能,求出的值;若不能,请说明理由;(3)当________时,为直角三角形.25.(12分)阅读下列题目的解题过程:已知a、b、c为ΔABC的三边,且满足解:∵a2∴c2(∴c2∴ΔABC是直角三角形问:(1)上述解题过程,从哪一步开始出现错误?请写出该步的代号:;(2)该步正确的写法应是:;(3)本题正确的结论为:.26.甲、乙两位同学参加数学竞赛辅导,三项培训内容的考试成绩如下表,现要选拔一人参赛.(1)若按三项考试成绩的平均分选拔,应选谁参赛;(2)若代数、几何、综合分别按20%、30%、50%的比例计算平均分,应选谁参赛.代数几何综合甲859275乙708390

参考答案一、选择题(每题4分,共48分)1、A【解题分析】试题分析:众数是在一组数据中,出现次数最多的数据,这组数据中33℃出现三次,出现的次数最多,故这组数据的众数为33℃.中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为31℃,32℃,32℃,33℃,33℃,33℃,34℃,34℃,35℃,35℃,∴中位数是按从小到大排列后第5,6个数的平均数,为:33℃.故选A.2、D【解题分析】

根据三角形的中位线平行于第三边并且等于第三边的一半求出AD,再根据菱形的周长公式列式计算即可得解.【题目详解】解:∵E、F分别是AC、DC的中点,∴EF是△ADC的中位线,∴AD=2EF=2×3=6,∴菱形ABCD的周长=4AD=4×6=1.故选:D.【题目点拨】本题主要考查了菱形的四条边都相等,三角形的中位线平行于第三边并且等于第三边的一半,求出菱形的边长是解题的关键.3、B【解题分析】

先证明ΔABF≌ΔDAE得到BF=AE,设BF=x,则AE=x,DE=AF=1,利用四边形ABED的面积=得,解之即可求得BF的长.【题目详解】∵四边形ABCD是正方形,∴BA=AD,∠BAD=90º,∴∠DAE+∠BAF=90º,∵BF⊥AM,DE⊥AM,∴∠AFB=∠DEA=90º,∴∠ABF+∠BAF=90º,∴∠ABF=∠DAE,在ΔABF和ΔDAE中∴ΔABF≌ΔDAE(AAS),∴BF=AE,DE=AF=1设BF=x,则AF=x,由四边形ABED的面积为6得:,即,解得:(舍去),∴BF=3,故选:B.【题目点拨】本题主要考查正方形的性质、三角形面积公式以及全等三角形的判定,熟练运用全等三角形的知识是解答的关键.4、C【解题分析】

根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【题目详解】解:∵二次函数y=﹣2x2+1,∴该函数图象开口向下,故选项A错误;顶点坐标为(0,1),故选项B错误;当x<0时,y随x的增大而增大,故选项C正确;当x=0时,y有最大值1,故选项D错误;故选:C.【题目点拨】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.5、C【解题分析】

根据八年级学生去距学校10千米的博物馆参观,一部分学生骑自行车先走,过了20分钟后,其余学生乘汽车出发,结果他们同时到达,可以列出相应的方程,从而可以得到哪个选项是正确的.【题目详解】由题意可得,

-=,

故选:C.【题目点拨】此题考查由实际问题抽象出分式方程,解题的关键是明确题意,找出题目中的等量关系,列出相应的方程.6、D【解题分析】

直接利用正比例函数的定义分析得出即可.【题目详解】∵y=(m+2)xm2﹣8是正比例函数,∴m2﹣8=2且m+2≠0,解得m=2.故选:D.【题目点拨】考查了正比例函数的定义,解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为2.7、D【解题分析】

根据邻边相等的平行四边形是菱形;根据对角线互相垂直的平行四边形是菱形;根据对角线相等的平行四边形是矩形;根据有一个角是直角的平行四边形是矩形.【题目详解】解:∵四边形ABCD是平行四边形,则A、当AB=BC时,四边形ABCD是菱形,正确;B、当AC⊥BD时,四边形ABCD是菱形,正确;C、当AC=BD时,四边形ABCD是矩形,正确;D、当∠ABC=90°时,四边形ABCD是矩形,故D错误;故选:D.【题目点拨】本题考查了菱形的判定和矩形的判定,解题的关键是熟练掌握菱形和矩形的判定定理.8、C【解题分析】

根据全等三角形的判定定理逐项分析,作出判断即可.【题目详解】解:①两直角边对应相等,两直角相等,所以根据SAS可以判定两直角边对应相等的两个直角三角形全等.故①正确;②两锐角对应相等的两个直角三角形不一定全等,因为对应边不一定相等.故②错误;③斜边和一直角边对应相等的两个直角三角形,可以根据HL判定它们全等.故③正确;④一锐角和斜边对应相等的两个直角三角形,可以根据AAS判定它们全等.故④正确;⑤一锐角和一边对应相等的两个直角三角形,可以根据AAS或ASA判定它们全等.故⑤正确.综上所述,正确的说法有4个.故选:C.【题目点拨】本题考查了直角三角形全等的判定.直角三角形首先是三角形,所以一般三角形全等的判定方法都适合它,同时,直角三角形又是特殊的三角形,有它的特殊性,作为“HL”公理就是直角三角形独有的判定方法.所以直角三角形的判定方法最多,使用时应该抓住“直角”这个隐含的已知条件.9、D【解题分析】

要使DN+MN最小,首先应分析点N的位置.根据正方形的性质:正方形的对角线互相垂直平分.知点D的对称点是点B,连接MB交AC于点N,此时DN+MN最小值即是BM的长.【题目详解】解:根据题意,连接BD、BM,则BM就是所求DN+MN的最小值,在Rt△BCM中,BC=8,CM=6根据勾股定理得:BM=,即DN+MN的最小值是10;故选:D.【题目点拨】本题考查了轴对称问题以及正方形的性质,难点在于确定满足条件的点N的位置:利用轴对称的方法.然后熟练运用勾股定理.10、B【解题分析】

设比值为,然后用表示出、、,再代入算式进行计算即可求解.【题目详解】设,则,,,.故选:.【题目点拨】本题考查了比例的性质,利用设“”法表示出、、是解题的关键,设“”法是中学阶段常用的方法之一,需熟练掌握并灵活运用.11、D【解题分析】

根据二次根式有意义,二次根式中的被开方数是非负数,分式要有意义分母不为零,进行分析即可.【题目详解】A.当a<0时,无意义,故此选项错误;B.当a>0或a<0时,无意义,故此选项错误;C.当a=0时,无意义,故此选项错误;D.a是任意实数,都有意义,故此选项正确;故选D.【题目点拨】本题考查二次根式有意义的条件,需注意是a取任何值时二次根式都要有意义,若存在使二次根式无意义的a皆是错.12、A【解题分析】

设张老师骑自行车的速度是x米/分,则李老师骑自行车的速度是1.2x米/分,根据题意可得等量关系:张老师行驶的路程3000÷他的速度-李老师行驶的路程3000÷他的速度=10分钟,根据等量关系列出方程即可.【题目详解】设张老师骑自行车的速度是x米/分,由题意得:,故选:A.【题目点拨】此题主要考查了由实际问题抽象出分式方程,关键是正确理解题意,表示出李老师和张老师各行驶3000米所用的时间,根据时间关系列出方程.二、填空题(每题4分,共24分)13、【解题分析】

先分别求出小刚和小丽用的时间,然后比较即可得出答案.【题目详解】解:小丽用的时间为=,

小刚用的时间为+=,

>,

∴-=,

故答案为.【题目点拨】本题考查列代数式以及分式的加减.正确的列出代数式是解决问题的关键.14、4【解题分析】

连接DE,交AC于点P,连接BD,由正方形的性质及对称的性质可得DE即为所求,然后运用勾股定理在RT△CDE中求解即可.【题目详解】解:连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=8,E是BC的中点,∴CE=4,在Rt△CDE中,DE=.故答案为.【题目点拨】正方形的性质、对称的性质及勾股定理是本题的考点,根据题意作出辅助线并确定DE即为所求是解题的关键.15、y=5x+1.【解题分析】试题分析:总费用=成人票用钱数+学生票用钱数,根据关系列式即可.试题解析:根据题意可知y=5x+1.考点:列代数式.16、3【解题分析】分析:因式分解,把已知整体代入求解.详解:x2y+xy2=xy(x+y)=3.点睛:因式分解的方法:(1)提取公因式法.ma+mb+mc=m(a+b+c).(2)公式法:完全平方公式,平方差公式.(3)十字相乘法.因式分解的时候,要注意整体换元法的灵活应用,训练将一个式子看做一个整体,利用上述方法因式分解的能力.17、【解题分析】

根据题意可得重叠部分的面积和面积相等,求出面积即可.【题目详解】解:如图,四边形和是正方形又故答案为:1【题目点拨】本题考查了正方形的性质,将重叠部分的面积进行转化是解题的关键.18、二【解题分析】

根据各象限内点的坐标特征解答.【题目详解】解:点位于第二象限.

故答案为:二.【题目点拨】本题考查了各象限内点的坐标的符号特征以,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).三、解答题(共78分)19、(1)2a;(2)当P为BC中点时,四边形ADPE是菱形,见解析;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,理由见解析.【解题分析】

(1)根据平行线的性质和等腰三角形的性质证明∠B=∠DPB,∠C=∠EPC,进而可得DB=DP,PE=EC,从而可得四边形ADPE的周长=AD+DP+PE+AE=AB+AC;(2)当P运动到BC中点时,四边形ADPE是菱形;首先证明四边形ADPE是平行四边形,再证明DP=PE即可得到四边形ADPE是菱形;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,首先证明四边形ADPE是平行四边形,再根据平行线的性质可得∠1=∠3,从而可证出∠2=∠3,进而可得AE=EP,然后可得四边形ADPE是菱形.【题目详解】(1)∵PD∥AC,PE∥AB,∴∠DPB=∠C,∠EPC=∠B,∵AB=AC,∴∠B=∠C,∴∠B=∠DPB,∠C=∠EPC,∴DB=DP,PE=EC,∴四边形ADPE的周长是:AD+DP+PE+AE=AB+AC=2a;(2)当P运动到BC中点时,四边形ADPE是菱形;∵PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∴PD=AE,PE=AD,∵PD∥AC,PE∥AB,∴∠DPB=∠C,∠EPC=∠B,∵P是BC中点,∴PB=PC,在△DBP和△EPC中,∠B=∠EPCBP=CP∠C=∠DPB∴△DBP≌△EPC(ASA),∴DP=EC,∵EC=PE,∴DP=EP,∴四边形ADPE是菱形;(3)P运动到∠A的平分线上时,四边形ADPE是菱形,∵PD∥AC,PE∥AB,∴四边形ADPE是平行四边形,∵AP平分∠BAC,∴∠1=∠2,∵AB∥EP,∴∠1=∠3,∴∠2=∠3,∴AE=EP,∴四边形ADPE是菱形.【题目点拨】此题考查菱形的判定,等腰三角形的性质,解题关键在于证明∠B=∠DPB,∠C=∠EPC.20、(1)△DOE≌△BOF;证明见解析;(2)绕点O旋转180°后得到或以点O为中心作对称变换得到.【解题分析】

(1)本题要证明如△ODE≌△BOF,已知四边形ABCD是平行四边形,具备了同位角、内错角相等,又因为OD=OB,可根据AAS能判定△DOE≌△BOF;(2)平行四边形是中心对称图形,这对全等三角形中的一个是以其中另一个三角形绕点O旋转180°后得到或以点O为中心作对称变换得到.【题目详解】(1)△DOE≌△BOF;证明:∵四边形ABCD是平行四边形,∴AD∥BC.∴∠EDO=∠FBO,∠E=∠F.又∵OD=OB,∴△DOE≌△BOF(AAS).(2)绕点O旋转180°后得到或以点O为中心作对称变换得到.考点:1.平行四边形的性质;2.全等三角形的判定.21、(1)①安排A种产品30件,B种产品20件;②安排A种产品31件,B种产品19件;③安排A种产品32件,B种产品18件;(2)y=﹣500x+60000,A种产品30件,B种产品20件,对应方案的利润最大,最大利润为45000元.【解题分析】(1)设安排生产A种产品x件,则生产B件产品为(50-x)件,则根据生产一件A产品,需要甲种原料共9kg,乙种原料3kg,生产一件B种产品,需用甲种原料4kg,乙种原料10kg,及有甲种原料360kg,乙种原料290kg,即可列出不等式组,解出不等式组的解,即可得到结论;(2)根据已知生产一件A产品,可获利润700元;生产一件B种产品,可获利润1200元,可建立函数关系式,利用函数的单调性及(1)的结论,即可求得结论.22、(1)见解析;(2)见解析;(3)P(2,0).【解题分析】

(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接即可;(2))找出点A、B、C关于原点O的对称点的位置,然后顺次连接即可;(3)找出A的对称点A′,连接BA′,与x轴交点即为P.【题目详解】解:(1)根据网格结构找出点A、B、C平移后的对应点的位置,然后顺次连接,如图所示:(2)找出点A、B、C关于原点O的对称点的位置,然后顺次连接,如图所示:(3)找出A的对称点A′,连接BA′,与x轴交点即为P,,由题知,A(1,1),B(4,2),∴A′(1,-1),设A′B的解析式为y=kx+b,把B(4,2),A′(1,-1)代入y=kx+b中,则,解得:,∴y=x-2,当y=0时,x=2,则P点坐标为(2,0).【题目点拨】本题考查了利用平移变换及原点对称作图及最短路线问题;熟练掌握网格结构准确找出对应点的位置和一次函数知识是解题的关键.23、(1);(2)1;(2)见解析;(4)y=-2.【解题分析】

(1)根据分母不为0即可得出关于x的一元一次不等式,解之即可得出结论;

(2)将x=2代入函数解析式中求出m值即可;

(2)连点成线即可画出函数图象;

(4)观察函数图象即可求解.【题目详解】解:(1)由题意得:x-1≠0,

解得:x≠1.

故答案为:x≠1;

(2)当x=时,m=-2=4-2=1,

即m的值为1;

(2)图象如图所示:

(4)根据画出的函数图象,发现下列特征:

该函数的图象与直线x=1越来越靠近而永不相交,该函数的图象还与直线y=2越来越靠近而永不相交,

故答案为y=2.【题目点拨】本题考查了反比例函数图象上点的坐标特征,函数自变量的取值范围以及函数图象,连点成曲线画出函数图象是解题的关键.24、(1)详见解析;(2)能;(3)2或秒【解题分析】

(1)在中,,,由已

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论