江苏省盐城市联谊学校2024届八年级数学第二学期期末统考模拟试题含解析_第1页
江苏省盐城市联谊学校2024届八年级数学第二学期期末统考模拟试题含解析_第2页
江苏省盐城市联谊学校2024届八年级数学第二学期期末统考模拟试题含解析_第3页
江苏省盐城市联谊学校2024届八年级数学第二学期期末统考模拟试题含解析_第4页
江苏省盐城市联谊学校2024届八年级数学第二学期期末统考模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江苏省盐城市联谊学校2024届八年级数学第二学期期末统考模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每题4分,共48分)1.如图,菱形ABCD的周长为16,面积为12,P是对角线BD上一点,分别作P点到直线AB,AD的垂线段PE,PF,则PE+PF等于()A.6 B.3 C.1.5 D.0.752.禽流感病毒的形状一般为球形,直径大约为0.000000102m,该直径用科学记数法表示为()A.1.02×10﹣7m B.10.2×10﹣7m C.1.02×10﹣6m D.1.0×10﹣8m3.关于一元二次方程根的情况描述正确的是()A.有两个相等的实数根 B.没有实数根C.有两个不相等的实数根 D.不能确定4.把函数与的图象画在同一个直角坐标系中,正确的是()A. B.C. D.5.已知反比例函数,则下列结论正确的是()A.其图象分别位于第一、三象限B.当时,随的增大而减小C.若点在它的图象上,则点也在它的图象上D.若点都在该函数图象上,且,则6.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,下列条件中,不能使四边形DBCE成为菱形的是()A.AB=BE B.BE⊥DC C.∠ABE=90° D.BE平分∠DBC7.若一次函数y=x+4的图象上有两点A(﹣,y1)、B(1,y2),则下列说法正确的是()A.y1>y2 B.y1≥y2 C.y1<y2 D.y1≤y28.如图,正方形ABCD的四个顶点A、B、C、D正好分别在四条平行线l1、l2、l3、l4上.若从上到下每两条平行线间的距离都是2cm,则正方形ABCD的面积为()A.4cm2 B.5cm2 C.20cm2 D.30cm29.直角三角形中,两条直角边的边长分别为6和8,则斜边上的中线长是()A.10 B.8 C.6 D.510.某医药研究所开发了一种新药,在试验效果时发现,如果成人按规定剂量服用,服药后血液中的含药量逐渐增多,一段时间后达到最大值,接着药量逐步衰减直至血液中含药量为0,每毫升血液中含药量(微克)随时间(小时)的变化如图所示,下列说法:(1)2小时血液中含药量最高,达每毫升6微克.(2)每毫升血液中含药量不低于4微克的时间持续达到了6小时.(3)如果一病人下午6:00按规定剂量服此药,那么,第二天中午12:00,血液中不再含有该药,其中正确说法的个数是()A.0 B.1C.2 D.311.甲、乙两人分别骑自行车和摩托车从A地到B地,两人所行驶的路程与时间的关系如图所示,下面的四个说法:甲比乙早出发了3小时;乙比甲早到3小时;甲、乙的速度比是5:6;乙出发2小时追上了甲.其中正确的个数是A.1个 B.2个 C.3个 D.4个12.下列函数中,是正比例函数的是()A. B. C. D.二、填空题(每题4分,共24分)13.如图,平行四边形ABCD中,∠A的平分线AE交CD于E,连接BE,点F、G分别是BE、BC的中点,若AB=6,BC=4,则FG的长_________________.14.分解因式:=.15.如图在菱形ABCD中,∠A=60°,AD=,点P是对角线AC上的一个动点,过点P作EF⊥AC交AD于点E,交AB于点F,将△AEF沿EF折叠点A落在G处,当△CGB为等腰三角形时,则AP的长为__________.16.因式分解:_________.17.若一次函数y=kx+1(k为常数,0)的图象经过第一、二、四象限,则k的取值范围是_______________.18.如图,在菱形中,点为上一点,,连接.若,则的度数为__________.三、解答题(共78分)19.(8分)(1)研究规律:先观察几个具体的式子:(2)寻找规律:(且为正整数)(3)请完成计算:20.(8分)解不等式组.21.(8分)今年上海市政府计划年内改造1.8万个分类垃圾箱房,把原有的分类垃圾箱房改造成可以投放“干垃圾、湿垃圾、可回收垃圾、有害垃圾”四类垃圾的新型环保垃圾箱房.环卫局原定每月改造相同数量的分类垃圾箱房,为确保在年底前顺利完成改造任务,环卫局决定每月多改造250个分类垃圾箱房,提前一个月完成任务.求环卫局每个月实际改造分类垃圾箱房的数量.22.(10分)在综合与实践课上,老师组织同学们以“矩形纸片的折叠”为主题开展数学活动.(1)奋进小组用图1中的矩形纸片ABCD,按照如图2所示的方式,将矩形纸片沿对角线AC折叠,使点B落在点处,则与重合部分的三角形的类型是________.(2)勤学小组将图2中的纸片展平,再次折叠,如图3,使点A与点C重合,折痕为EF,然后展平,则以点A、F、C、E为顶点的四边形是什么特殊四边形?请说明理由.(3)创新小组用图4中的矩形纸片ABCD进行操作,其中,,先沿对角线BD对折,点C落在点的位置,交AD于点G,再按照如图5所示的方式折叠一次,使点D与点A重合,得折痕EN,EN交AD于点M.则EM的长为________cm.23.(10分)某中学举行春季长跑比赛活动,小明从起点学校西门出发,途经市博物馆后按原路返还,沿比赛路线跑回终点学校西门.设小明离开起点的路程s(千米)与跑步时间t(分钟)之间的函数关系如图所示,其中从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟根据图象提供的信息,解答下列问题:(1)求图中的值,并求出所在直线方程;(2)组委会在距离起点2.1千米处设立一个拍摄点,小明从第一次过点到第二次经过点所用的时间为68分钟①求所在直线的函数解析式;②该运动员跑完赛程用时多少分钟?24.(10分)为了了解某校初中各年级学生每天的平均睡眠时间(单位:,精确到,抽样调查了部分学生,并用得到的数据绘制了下面两幅不完整的统计图.请你根据图中提供的信息,回答下列问题:(1)求出扇形统计图中百分数的值为_____,所抽查的学生人数为______.(2)求出平均睡眠时间为8小时的人数,并补全条形统计图.(3)求出这部分学生的平均睡眠时间的众数和平均数.(4)如果该校共有学生1800名,请你估计睡眠不足(少于8小时)的学生数.25.(12分)某数码专营店销售甲、乙两种品牌智能手机,这两种手机的进价和售价如下表所示:甲乙进价(元/部)43003600售价(元/部)48004200(1)该店销售记录显示.三月份销售甲、乙两种手机共17部,且销售甲种手机的利润恰好是销售乙种手机利润的2倍,求该店三月份售出甲种手机和乙种手机各多少部?(2)根据市场调研,该店四月份计划购进这两种手机共20部,要求购进乙种手机数不超过甲种手机数的,而用于购买这两种手机的资金低于81500元,请通过计算设计所有可能的进货方案.(3)在(2)的条件下,该店打算将四月份按计划购进的20部手机全部售出后,所获得利润的30%用于购买A,B两款教学仪器捐赠给某希望小学.已知购买A仪器每台300元,购买B仪器每台570元,且所捐的钱恰好用完,试问该店捐赠A,B两款仪器一共多少台?(直接写出所有可能的结果即可)26.如图,在中,,,的垂直平分线分别交和于点、.求证:.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】∵菱形ABCD的周长为16,∴BC=4,菱形面积为12,BC边上的高为3,∵∠ABD=∠CBD,P到BC距离等于h=PE,∴PE+PF=h+PF=3.所以选B.点睛:菱形的面积公式有两个:(1)知道底和高,按照平行四边形的面积公式计算:S=ah.

(2)知道两条对角线的长a和b,面积S=ab22、A【解题分析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.000000102m=1.02×10﹣7m;故选A.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3、A【解题分析】

将该一元二次方程转化为一般形式,求出Δ的值,进行判断即可.【题目详解】解:∵∴原方程有两个相等的实数根。故答案为:A【题目点拨】本题考查了Δ与一元二次方程实数根的关系,①时,该一元二元方程有两个不相等的实数根;②时,该一元二元方程有两个相等的实数根;时,该一元二元方程没有实数根.4、D【解题分析】

根据正比例函数解析式及反比例函数解析式确定其函数图象经过的象限即可.【题目详解】解:函数中,所以其图象过一、三象限,函数中,所以其图象的两支分别位于第一、三象限,符合的为D选项.故选D.【题目点拨】本题综合考查了一次函数与反比例函数的图象,熟练掌握函数的系数与其图象经过的象限的关系是解题的关键.5、C【解题分析】

根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【题目详解】解:反比例比例系数的正负决定其图象所在象限,当时图象在第一、三象限;当时图象在二、四象限,由题可知,所以A错误;当时,反比例函数图象在各象限内随的增大而减小;当时,反比例函数图象在各象限内随的增大而增大,由题可知,当时,随的增大而增大,所以B错误;比例系数:如果任意一点在反比例图象上,则该点横纵坐标值的乘积等于比例系数,因为点在它的图象上,所以,又因为点的横纵坐标值的乘积,所以点也在函数图象上,故C正确当时,反比例函数图象在各象限内随的增大而增大,由题可知,所以当时,随的增大而增大,而D选项中的并不确定是否在同一象限内,所以的大小不能粗糙的决定!所以D错误;故选:C【题目点拨】本题考查了反比例函数的性质,熟悉反比例函数的图象和性质是解题的关键.6、A【解题分析】

根据菱形的判定方法一一判断即可;【题目详解】解:∵四边形ABCD为平行四边形,

∴AD∥BC,AD=BC,

又∵AD=DE,

∴DE∥BC,且DE=BC,

∴四边形BCED为平行四边形,

A、∵AB=BE,DE=AD,∴BD⊥AE,∴▱DBCE为矩形,故本选项错误;

B、∵BE⊥DC,∴对角线互相垂直的平行四边形为菱形,故本选项正确;

C、∵∠ABE=90°,∴BD=DE,∴邻边相等的平行四边形为菱形,故本选项正确;

D、∵BE平分∠DBC,∴对角线平分对角的平行四边形为菱形,故本选项正确.

故选A.【题目点拨】本题考查了平行四边形的判定以及菱形的判定,正确掌握菱形的判定与性质是解题关键.7、C【解题分析】试题分析:∵k=1>0,∴y随x的增大而增大,∵-<1,∴y1<y1.故选C.考点:一次函数的性质.8、C【解题分析】

过D作直线EF与平行线垂直,交l1与点E,交l4于点F.再证明,得到,故可求的CD的长,进而求出正方形的面积.【题目详解】过D作直线EF与l2垂直,交l1与点E,交l4于点F.,即四边形ABCD为正方形在和中即正方形的面积为20故选C.【题目点拨】本题主要考查平行线的性质,关键在于利用三角形全等求正方形的边长.9、D【解题分析】

如图,根据勾股定理求出AB,根据直角三角形斜边上中线求出CD=12AB【题目详解】解:如图,∵∠ACB=90°,AC=6,BC=8,由勾股定理得:AB=AC2+∵CD是△ABC中线,∴CD=12AB=12×故选D.【题目点拨】本题主要考查对勾股定理,直角三角形斜边上的中线等知识点的理解和掌握,能推出CD=12AB10、D【解题分析】

通过观察图象获取信息列出函数解析式,并根据一次函数的性质逐一进行判断即可。【题目详解】解:由图象可得,服药后2小时内,血液中的含药量逐渐增多,在2小时的时候达到最大值,最大值为每毫升6微克,故(1)是正确的;设当0≤x≤2时,设y=kx,∴2k=6,解得k=3∴y=3x当y=4时,x=设直线AB的解析式为y=ax+b,得解得a=-;b=∴y=-x+当y=4时,x=∴每毫升血液中含药量不低于4微克的时间持续-小时,故(2)正确把y=0代入y=-x+得x=18前一天下午六点到第二天上午12点时间为18小时,所以(3)正确。故正确的说法有3个.故选:D【题目点拨】主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.11、B【解题分析】分析:根据函数图象中所提供的信息进行分析判断即可.详解:(1)由图中信息可知,乙是在甲出发3小时后出发的,所以结论①正确;(2)由图中信息可知,甲是在乙到达终点3小时后到达的,所以结论②正确;(3)由题中信息可得:V甲=80÷8=10(km/小时)V乙=80÷2=40(km/小时),由此可得:V甲:V乙=1:4,所以结论③错误;(4)由图中信息和(3)中所求甲和乙的速度易得,乙出发后1小时追上甲,所以结论④不成立.综上所述,4个结论中正确的有2个.故选B.点睛:读懂题意,能够从函数图象中获取相关数据信息是解答本题的关键.12、B【解题分析】

正比例函数的一般形式是y=kx(k≠0).【题目详解】解:A.该函数不符合y=kx(k为常数且k≠0)的形式,自变量的次数是2,属于二次函数,故本选项错误;B.该函数符合y=kx(k为常数且k≠0)的形式,是正比例函数,故本选项正确;

C.该函数不符合y=kx(k为常数且k≠0)的形式,自变量的次数是-1,属于反比例函数,故本选项错误.

D.该函数不符合y=kx(k为常数且k≠0)的形式,是一次函数,故本选项错误;

故选:B.【题目点拨】本题考查了正比例函数的定义.解题关键是掌握正比例函数的定义条件:正比例函数y=kx的定义条件是:k为常数且k≠0,自变量次数为1.二、填空题(每题4分,共24分)13、1【解题分析】

先由平行四边形的性质以及角平分线的定义判断出∠DAE=∠DEA,继而求得CE的长,再根据三角形中位线定理进行求解即可.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC=4,DC=AB=6,DC//AB,∴∠EAB=∠AED,∵∠EAB=∠DAE,∴∠DAE=∠DEA,∴DE=AD=4,∴CE=CD-DE=6-4=2,∵点F、G分别是BE、BC的中点,∴FG=EC=1,故答案为1.【题目点拨】本题考查了平行四边形的性质,等腰三角形的判定,三角形中位线定理,熟练掌握相关内容是解题的关键.14、.【解题分析】试题分析:原式=.故答案为.考点:因式分解-运用公式法.15、1或.【解题分析】

分两种情形①CG=CB,②GC=GB,分别求解即可解决问题.【题目详解】在菱形ABCD中,∵∠A=60°,AD=,∴AC=3,①当CG=BC=时,AG=AC=CG=3-,∴AP=AG=.②当GC=GB时,易知GC=1,AG=2,∴AP=AG=1,故答案为1或.【题目点拨】本题考查翻折变换、等腰三角形的性质、勾股定理、菱形的性质等知识,解题的关键是学会用分类讨论的思想思考问题16、【解题分析】

直接提取公因式即可.【题目详解】.故答案为:.【题目点拨】本题考查了因式分解——提取公因式法,掌握知识点是解题关键.17、k<1【解题分析】

根据一次函数图象所经过的象限确定k的符号.【题目详解】解:∵一次函数y=kx+1(k为常数,k≠1)的图象经过第一、二、四象限,

∴k<1.

故填:k<1.【题目点拨】本题主要考查一次函数图象在坐标平面内的位置与k、b的关系.解答本题注意理解:直线y=kx+b所在的位置与k、b的符号有直接的关系.k>1时,直线必经过一、三象限.k<1时,直线必经过二、四象限.b>1时,直线与y轴正半轴相交.b=1时,直线过原点;b<1时,直线与y轴负半轴相交.18、18【解题分析】

由菱形的性质可得AD=CD,∠A=∠BCD,CD∥AB,由等腰三角形的性质可得∠DAE=∠DEA=72°,∠DCE=54°,即可求解.【题目详解】解:∵四边形ABCD是菱形,∴AD=CD,∠A=∠BCD,CD∥AB,∵DE=AD,∠ADE=36°,∴∠DAE=∠DEA=72°,∵CD∥AB,∴∠CDE=∠DEA=72°,且DE=DC=DA,∴∠DCE=54°,∵∠DCB=∠DAE=72°,∴∠BCE=∠DCB-∠DCE=18°.故答案为:18.【题目点拨】本题考查了菱形的性质,等腰三角形的性质,熟练运用菱形的性质是本题的关键.三、解答题(共78分)19、(1);;;(2);(3).【解题分析】

(1)各式计算得到结果即可;(2)归纳总结得到一般性规律,写出即可;(3)原式各项利用得出的规律变形,计算即可求出值.【题目详解】解:(1);;;(2);(3)原式=.【题目点拨】此题考查了二次根式的加减法,以及规律型:数字的变化类,熟练掌握运算法则是解本题的关键.20、1≤x<.【解题分析】

分别求出各不等式的解集,再求出其公共解集即可.【题目详解】解不等式①,得:x≥1,解不等式②,得:x<,所以不等式组的解集为1≤x<.【题目点拨】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.21、环卫局每个月实际改造类垃圾箱房2250个.【解题分析】

设原计划每个月改造垃圾房万个,然后根据题意列出分式方程,解方程即可得出答案.【题目详解】设原计划每个月改造垃圾房万个,则实际每月改造万个..化简得:.解得:,.经检验:,是原方程的解.其中符合题意,不符合题意舍去.万个,即2250个.答:环卫局每个月实际改造类垃圾箱房2250个.【题目点拨】本题主要考查分式方程的应用,能够根据题意列出分式方程是解题的关键.22、(1)等腰三角形(或钝角三角形);(2)菱形,理由详见解析;(3).【解题分析】

(1)利用折叠的性质和角平分线定义即可得出结论;

(2)利用四边相等的四边形是菱形即可得出结论;

(3)由勾股定理可求BD的长,BG的长,AG的长,利用勾股定理和折叠的性质可得到结果。【题目详解】解:(1)等腰三角形(或钝角三角形).提示:∵四边形ABCD是矩形,∴,∴.由折叠知,,∴,∴重合部分的三角形是等腰三角形.(2)菱形.理由:如图,连接AE、CF,设EF与AC的交点为M,由折叠知,,,∴,.∵四边形ABCD是矩形,∴,∴,,∴,∴,∴,∴以点A,F,C,E为顶点的四边形是菱形.(3).提示:∵点D与点A重合,得折痕EN,,,∴.在中,,∴.∵,,∴.∵,∴,∴,∴由勾股定理可得,由折叠的性质可知,∵,∴,∴,∴,设,则.由勾股定理得,即,解得,即.【题目点拨】本题是四边形综合题,考查了矩形的性质,菱形的判定,等腰三角形的判定,全等三角形的判定和性质,相似三角形的判定和性质,勾股定理。23、(1);(2)①;②85分钟【解题分析】

(1)根据路程=速度×时间,再把A点的值代入即可解决问题.(2)①先求出A、B两点坐标即可解决问题.②令s=0,求出x的值即可解决问题.【题目详解】解:(1)∵从起点到市博物馆的平均速度是0.3千米/分钟,用时35分钟,∴千米.∴,设直线的解析式为:,把代入,得,解得,,∴直线的解析式为:;(2)①∵直线解析式为,∴当时,,解得,∵小明从第一次经过C点到第二次经过C点所用的时间为68分钟,∴小明从起点到第二次经过C点所用的时间是,分钟,∴直线经过,,设直线解析式,∴,,解得,,∴直线解析式为.②小明跑完赛程用的时间即为直线与轴交点的横坐标,∴当时,,解得,∴小明跑完赛程用时85分钟.【题目点拨】此题考查一次函数综合题,解题关键在于列出方程.24、(1)45%,60人;(2)18人,条形统计图见解析;(3)众数7,平均数7.2;(4)1170人.【解题分析】

(1)用1减去每天的平均睡眠时间为6小时,8小时,9小时所占的百分比即可求出a的值,用每天的平均睡眠时间为6小时的人数除以其所占的百分比即可得到总人数;(2)用总人数乘以每天的平均睡眠时间为8小时所占的百分比即可求出睡眠时间为8小时的人数,用总人数乘以a的值即可求出睡眠时间为7小时的人数,然后即可补全条形统计图;(3)根据众数和平均数的定义计算即可;(4)先计算出睡眠时间少于8小时的人所占的百分比,然后用总人数1800乘以这个百分比即可得出答案.【题目详解】(1),所抽查的学生人数为(人);(2)平均睡眠时间为8小时的人数为(人),平均睡眠时间为7小时的人数为(人),条形统计图如下:(3)由扇形统计图可知,睡眠时间为7小时的人数最多,所以这部分学生的平均睡眠时间的众数为7,平均数为;(4)(人)【题目点拨】本题主要考查条形统计图和扇形统计图,掌握条形统计图和扇形统计图以及众数,平均数的求法是解题的关键.25

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论