




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
云南省普洱市重点中学2023-2024学年高考全国统考预测密卷数学试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若,,则 B.若,,则C.若,,,则 D.若,,,则2.在中,,则=()A. B.C. D.3.已知等差数列的前n项和为,且,,若(,且),则i的取值集合是()A. B. C. D.4.函数的大致图象为()A. B.C. D.5.年某省将实行“”的新高考模式,即语文、数学、英语三科必选,物理、历史二选一,化学、生物、政治、地理四选二,若甲同学选科没有偏好,且不受其他因素影响,则甲同学同时选择历史和化学的概率为A. B. C. D.6.若满足约束条件则的最大值为()A.10 B.8 C.5 D.37.已知a>0,b>0,a+b=1,若α=,则的最小值是()A.3 B.4 C.5 D.68.已知函数的零点为m,若存在实数n使且,则实数a的取值范围是()A. B. C. D.9.从抛物线上一点(点在轴上方)引抛物线准线的垂线,垂足为,且,设抛物线的焦点为,则直线的斜率为()A. B. C. D.10.已知的共轭复数是,且(为虚数单位),则复数在复平面内对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.已知点P在椭圆τ:=1(a>b>0)上,点P在第一象限,点P关于原点O的对称点为A,点P关于x轴的对称点为Q,设,直线AD与椭圆τ的另一个交点为B,若PA⊥PB,则椭圆τ的离心率e=()A. B. C. D.12.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率等于()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.记数列的前项和为,已知,且.若,则实数的取值范围为________.14.在棱长为的正方体中,是正方形的中心,为的中点,过的平面与直线垂直,则平面截正方体所得的截面面积为______.15.已知公差大于零的等差数列中,、、依次成等比数列,则的值是__________.16.直线(,)过圆:的圆心,则的最小值是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,平面,,,分别为,的中点.(1)求证:平面;(2)若平面平面,求直线与平面所成角的正弦值.18.(12分)已知椭圆,上、下顶点分别是、,上、下焦点分别是、,焦距为,点在椭圆上.(1)求椭圆的方程;(2)若为椭圆上异于、的动点,过作与轴平行的直线,直线与交于点,直线与直线交于点,判断是否为定值,说明理由.19.(12分)已知的内角,,的对边分别为,,,且.(1)求;(2)若的面积为,,求的周长.20.(12分)如图,椭圆的长轴长为,点、、为椭圆上的三个点,为椭圆的右端点,过中心,且,.(1)求椭圆的标准方程;(2)设、是椭圆上位于直线同侧的两个动点(异于、),且满足,试讨论直线与直线斜率之间的关系,并求证直线的斜率为定值.21.(12分)在本题中,我们把具体如下性质的函数叫做区间上的闭函数:①的定义域和值域都是;②在上是增函数或者减函数.(1)若在区间上是闭函数,求常数的值;(2)找出所有形如的函数(都是常数),使其在区间上是闭函数.22.(10分)已知函数f(x)=ex-x2-kx(其中e为自然对数的底,k为常数)有一个极大值点和一个极小值点.(1)求实数k的取值范围;(2)证明:f(x)的极大值不小于1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据空间中直线与平面、平面与平面位置关系相关定理依次判断各个选项可得结果.【详解】对于,当为内与垂直的直线时,不满足,错误;对于,设,则当为内与平行的直线时,,但,错误;对于,由,知:,又,,正确;对于,设,则当为内与平行的直线时,,错误.故选:.【点睛】本题考查立体几何中线面关系、面面关系有关命题的辨析,考查学生对于平行与垂直相关定理的掌握情况,属于基础题.2、B【解析】
在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.3、C【解析】
首先求出等差数列的首先和公差,然后写出数列即可观察到满足的i的取值集合.【详解】设公差为d,由题知,,解得,,所以数列为,故.故选:C.【点睛】本题主要考查了等差数列的基本量的求解,属于基础题.4、A【解析】
利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,,,.故选:A.【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.5、B【解析】
甲同学所有的选择方案共有种,甲同学同时选择历史和化学后,只需在生物、政治、地理三科中再选择一科即可,共有种选择方案,根据古典概型的概率计算公式,可得甲同学同时选择历史和化学的概率,故选B.6、D【解析】
画出可行域,将化为,通过平移即可判断出最优解,代入到目标函数,即可求出最值.【详解】解:由约束条件作出可行域如图,化目标函数为直线方程的斜截式,.由图可知当直线过时,直线在轴上的截距最大,有最大值为3.故选:D.【点睛】本题考查了线性规划问题.一般第一步画出可行域,然后将目标函数转化为的形式,在可行域内通过平移找到最优解,将最优解带回到目标函数即可求出最值.注意画可行域时,边界线的虚实问题.7、C【解析】
根据题意,将a、b代入,利用基本不等式求出最小值即可.【详解】∵a>0,b>0,a+b=1,∴,当且仅当时取“=”号.
答案:C【点睛】本题考查基本不等式的应用,“1”的应用,利用基本不等式求最值时,一定要正确理解和掌握“一正,二定,三相等”的内涵:一正是首先要判断参数是否为正;二定是其次要看和或积是否为定值(和定积最大,积定和最小);三相等是最后一定要验证等号能否成立,属于基础题.8、D【解析】
易知单调递增,由可得唯一零点,通过已知可求得,则问题转化为使方程在区间上有解,化简可得,借助对号函数即可解得实数a的取值范围.【详解】易知函数单调递增且有惟一的零点为,所以,∴,问题转化为:使方程在区间上有解,即在区间上有解,而根据“对勾函数”可知函数在区间的值域为,∴.故选D.【点睛】本题考查了函数的零点问题,考查了方程有解问题,分离参数法及构造函数法的应用,考查了利用“对勾函数”求参数取值范围问题,难度较难.9、A【解析】
根据抛物线的性质求出点坐标和焦点坐标,进而求出点的坐标,代入斜率公式即可求解.【详解】设点的坐标为,由题意知,焦点,准线方程,所以,解得,把点代入抛物线方程可得,,因为,所以,所以点坐标为,代入斜率公式可得,.故选:A【点睛】本题考查抛物线的性质,考查运算求解能力;属于基础题.10、D【解析】
设,整理得到方程组,解方程组即可解决问题.【详解】设,因为,所以,所以,解得:,所以复数在复平面内对应的点为,此点位于第四象限.故选D【点睛】本题主要考查了复数相等、复数表示的点知识,考查了方程思想,属于基础题.11、C【解析】
设,则,,,设,根据化简得到,得到答案.【详解】设,则,,,则,设,则,两式相减得到:,,,即,,,故,即,故,故.故选:.【点睛】本题考查了椭圆的离心率,意在考查学生的计算能力和转化能力.12、B【解析】由于直线的斜率k,所以一条渐近线的斜率为,即,所以,选B.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据递推公式,以及之间的关系,即可容易求得,再根据数列的单调性,求得其最大值,则参数的范围可求.【详解】当时,,解得.所以.因为,则,两式相减,可得,即,则.两式相减,可得.所以数列是首项为3,公差为2的等差数列,所以,则.令,则.当时,,数列单调递减,而,,,故,即实数的取值范围为.故答案为:.【点睛】本题考查由递推公式求数列的通项公式,涉及数列单调性的判断,属综合困难题.14、【解析】
确定平面即为平面,四边形是菱形,计算面积得到答案.【详解】如图,在正方体中,记的中点为,连接,则平面即为平面.证明如下:由正方体的性质可知,,则,四点共面,记的中点为,连接,易证.连接,则,所以平面,则.同理可证,,,则平面,所以平面即平面,且四边形即平面截正方体所得的截面.因为正方体的棱长为,易知四边形是菱形,其对角线,,所以其面积.故答案为:【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力.15、【解析】
利用等差数列的通项公式以及等比中项的性质,化简求出公差与的关系,然后转化求解的值.【详解】设等差数列的公差为,则,由于、、依次成等比数列,则,即,,解得,因此,.故答案为:.【点睛】本题考查等差数列通项公式以及等比中项的应用,考查计算能力,属于基础题.16、;【解析】
求出圆心坐标,代入直线方程得的关系,再由基本不等式求得题中最小值.【详解】圆:的标准方程为,圆心为,由题意,即,∴,当且仅当,即时等号成立,故答案为:.【点睛】本题考查用基本不等式求最值,考查圆的标准方程,解题方法是配方法求圆心坐标,“1”的代换法求最小值,目的是凑配出基本不等式中所需的“定值”.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析;(2).【解析】
(1)连接,,则且为的中点,又∵为的中点,∴,又平面,平面,故平面.(2)由平面,得,.以为原点,分别以,,所在直线为轴,轴,轴建立如图所示的空间直角坐标系,设,则,,,,,.取平面的一个法向量为,由,得:,令,得同理可得平面的一个法向量为∵平面平面,∴解得,得,又,设直线与平面所成角为,则.所以,直线与平面所成角的正弦值是.18、(1);(2),理由见解析.【解析】
(1)求出椭圆的上、下焦点坐标,利用椭圆的定义求得的值,进而可求得的值,由此可得出椭圆的方程;(2)设点的坐标为,求出直线的方程,求出点的坐标,由此计算出直线和的斜率,可计算出的值,进而可求得的值,即可得出结论.【详解】(1)由题意可知,椭圆的上焦点为、,由椭圆的定义可得,可得,,因此,所求椭圆的方程为;(2)设点的坐标为,则,得,直线的斜率为,所以,直线的方程为,联立,解得,即点,直线的斜率为,直线的斜率为,所以,,,因此,.【点睛】本题考查椭圆方程的求解,同时也考查了椭圆中定值问题的求解,考查计算能力,属于中等题.19、(1);(2).【解析】
(1)利用正弦定理将目标式边化角,结合倍角公式,即可整理化简求得结果;(2)由面积公式,可以求得,再利用余弦定理,即可求得,结合即可求得周长.【详解】(1)由题设得.由正弦定理得∵∴,所以或.当,(舍)故,解得.(2),从而.由余弦定理得.解得.∴.故三角形的周长为.【点睛】本题考查由余弦定理解三角形,涉及面积公式,正弦的倍角公式,应用正弦定理将边化角,属综合性基础题.20、(1);(2)详见解析.【解析】试题分析:(1)利用题中条件先得出的值,然后利用条件,结合椭圆的对称性得到点的坐标,然后将点的坐标代入椭圆方程求出的值,从而确定椭圆的方程;(2)将条件得到直线与的斜率直线的关系(互为相反数),然后设直线的方程为,将此直线的方程与椭圆方程联立,求出点的坐标,注意到直线与的斜率之间的关系得到点的坐标,最后再用斜率公式证明直线的斜率为定值.(1),,又是等腰三角形,所以,把点代入椭圆方程,求得,所以椭圆方程为;(2)由题易得直线、斜率均存在,又,所以,设直线代入椭圆方程,化简得,其一解为,另一解为,可求,用代入得,,为定值.考点:1.椭圆的方程;2.直线与椭圆的位置关系;3.两点间连线的斜率21、(1);(2).【解析】
(1)依据新定义,的定义域和值域都是,且在上单调,建立方程求解;(2)依据新定义,讨论的单调性,列出方程求解即可。【详解】(1)当时,由复合函数单调性知,在区间上是增函数,即有,解得;同理,当时,有,解得,综上,。(2)若在上是闭函数,则在上是单调函数,①当在上是单调增函数,则,解得,检验符合;②当在上是单调减函数,则,解得,在上不是单调函数,不符合题意。故满足在区间上是闭函数只有。【点睛】本题主要考查学生的应用意识,利用所学知识分析解决新定义问题。22、(1);(2)见解析【解析】
(1)求出,记,问题转化为方程有两个不同解
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 股权投资协议书转让合同二零二五年
- 门面购买合同范本中介
- 租房房子保洁合同范本
- 比亚迪购车没合同范本
- 2025年保鲜膜切割器项目可行性研究报告
- 专业人课程教学设计理念
- 交通安全培训大纲
- 问卷网介绍及操作流程
- 2025年三联观片灯项目可行性研究报告
- 2025员工购房贷款合同
- 城乡环卫一体化保洁服务投标方案(技术方案)
- 血管活性药物静脉输注护理
- Nikon尼康D3100中文说明书
- Module 3 Unit-7 Chinese Zodiac Signs(Period 4)(解密中国十二生肖)
- 中国糖尿病血酮监测专家共识
- 直播运营专员岗位职责说明书
- 2024年辽宁高考地理真题试题(原卷版+含解析)
- 广州市白云区金广实验学校2022-2023学年七年级下学期期中考试英语试题
- 2024年吉林省长春莲花山生态旅游度假区事业单位招聘5人(3号)【重点基础提升】模拟试题(共500题)附带答案详解
- 俄罗斯介绍模板
- 50以内加减法练习题
评论
0/150
提交评论