版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省五常市部分学校数学八年级第二学期期末监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题(每小题3分,共30分)1.点(a,﹣1)在一次函数y=﹣2x+1的图象上,则a的值为()A.a=﹣3 B.a=﹣1 C.a=1 D.a=22.如图是小王早晨出门散步时,离家的距离s与时间t之间的函数图象.若用黑点表示小王家的位置,则小王散步行走的路线可能是()A. B. C. D.3.如图,在边长为1个单位长度的小正方形组成的网格中,点A、B都是格点,则线段AB的长度为()A.5 B.6 C.7 D.254.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有5个红球,且摸出红球的概率为,那么袋中总共球的个数为()A.15个 B.12个 C.8个 D.6个5.如图,以直角三角形的三边为边,分别向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3的图形有()A.1个 B.2个 C.3个 D.4个6.如图,点M(xM,yM)、N(xN,yN)都在函数图象上,当0<xM<xN时,()A.yM<yN B.yM=yNC.yM>yN D.不能确定yM与yN的大小关系7.直角坐标系中,点P(x,y)在第三象限,且P到x轴和y轴的距离分别为3、4,则点P的坐标为()A.(-3,-4) B.(3,4) C.(-4,-3) D.(4,3)8.两个相似三角形的最短边分别为4cm和2cm它们的周长之差为12cm,那么大三角形的周长为()A.18cm B.24cm C.28cm D.30cm9.下列图案中是轴对称图形的是()A. B. C. D.10.若点,都在反比例函数的图象上,则与的大小关系是A. B. C. D.无法确定二、填空题(每小题3分,共24分)11.如图,在矩形ABCD中,AB=2,BC=4,对角线AC的垂直平分线分别交AD、AC于点E、O,连接CE,则CE的长为______.12.已知,则的值等于__________.13.一组数据:25,29,20,x,14,它的中位数是24,则这组数据的平均数为_____.14.已知点(2,7)在函数y=ax+3的图象上,则a的值为____.15.下表记录了某校篮球队队员的年龄分布情况,则该校篮球队队员的平均年龄为_____.年龄/岁12131415人数134216.若某多边形有5条对角线,则该多边形内角和为_____.17.如图,四边形ABCD沿直线AC对折后重合,如果AC,BD交于O,AB∥CD,则结论①AB=CD,②AD∥BC,③AC⊥BD,④AO=CO,⑤AB⊥BC,其中正确的结论是___(填序号).18.如图,有一条折线A1B1A2B2A3B3A4B4…,它是由过A1(0,0),B1(2,2),A2(4,0)组成的折线依次平移4,8,12,…个单位得到的,直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,则k的值为______.三、解答题(共66分)19.(10分)数学课后,小玲和同桌小娟各自拿出自己的漂亮的正方形手帕,她们俩各有一条方格手帕和一条绣花手帕,如图,小玲说:“我的方格手帕的边长比你的方格手帕的边长大1.6.”小娟说:“我的绣花手帕的边长比你的绣花手帕的边长大1.6.”设小玲的两块手帕的面积和为,小娟的两块手帕的面积和为,请同学们运用因式分解的方法算一算与的差.20.(6分)用适当的方法解下列方程:(1)x(2﹣x)=x2﹣2(2)(2x+5)2﹣3(2x+5)+2=021.(6分)如图,在平面直角坐标系xOy中,已知直线AB:yx+4交x轴于点A,交y轴于点B.直线CD:yx﹣1与直线AB相交于点M,交x轴于点C,交y轴于点D.(1)直接写出点B和点D的坐标;(2)若点P是射线MD上的一个动点,设点P的横坐标是x,△PBM的面积是S,求S与x之间的函数关系;(3)当S=20时,平面直角坐标系内是否存在点E,使以点B、E、P、M为顶点的四边形是平行四边形?若存在,请直接写出所有符合条件的点E的坐标;若不存在,说明理由.22.(8分)如图1,OA=2,OB=4,以A点为顶点、AB为腰在第三象限作等腰Rt△ABC(1)求C点的坐标;(2)如图2,在平面内是否存在一点H,使得以A、C、23.(8分)城市到城市的铁路里程是300千米.若旅客从城市到城市可选择高铁和动车两种交通工具,高铁速度是动车速度的1.5倍,时间相差0.5小时,求高铁的速度.24.(8分)如图,已知在△ABC中,AB=AC=13cm,D是AB上一点,且CD=12cm,BD=8cm.(1)求证:△ADC是直角三角形;(2)求BC的长25.(10分)为参加全县的“我爱古诗词”知识竞赛,徐东所在学校组织了一次古诗词知识测试,徐东从全体学生中随机抽取部分同学的分数(得分取正整数,满分为100分)进行统计,以下是根据这次测试成绩制作的不完整的频数分布表(含频率)和频数分布直方图.请根据频数分布表(含频率)和频数分布直方图,回答下列问题:(1)分别求出a、b、m、n的值;(写出计算过程)(2)老师说:“徐东的测试成绩是被抽取的同学成绩的中位数”,那么徐东的测试成绩在什么范围内?(3)得分在的为“优秀”,若徐东所在学校共有600名学生,从本次比赛中选取得分为“优秀”的学生参加区赛,请问共有多少名学生被选拔参加区赛?26.(10分)在开展“好书伴我成长”读书活动中,某中学为了解八年级名学生的读书情况,随机调查了八年级名学生读书的册数,统计数据如下表所示.册数人数(1)求这个数据的平均数、众数和中位数.(2)根据这组数据,估计该校八年级名学生在本次活动中读书多于册的人数.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
把点A(a,﹣1)代入y=﹣2x+1,解关于a的方程即可.【题目详解】解:∵点A(a,﹣1)在一次函数y=﹣2x+1的图象上,∴﹣1=﹣2a+1,解得a=1,故选C.【题目点拨】此题考查一次函数图象上点的坐标特征;用到的知识点为:点在函数解析式上,点的横坐标就适合这个函数解析式.2、D【解题分析】
分析图象,可知该图象是路程与时间的关系,先离家逐渐变远,然后距离不变,在逐渐变近,据此进行判断即可得.【题目详解】通过分析图象和题意可知,行走规律是:离家逐渐远去,离家距离不变,离家距离逐渐近,所以小王散步行走的路线可能是故选D.【题目点拨】本题考查了函数的图象,根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论是解题的关键.3、A【解题分析】
解:利用勾股定理可得:,故选A.4、A【解题分析】
根据红球的概率公式列出方程求解即可.【题目详解】解:根据题意设袋中共有球m个,则
所以m=1.
故袋中有1个球.
故选:A.【题目点拨】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.5、D【解题分析】试题分析:(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(2)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(1)S1=,S2=,S1=,∵,∴,∴S1+S2=S1.(4)S1=,S2=,S1=,∵,∴S1+S2=S1.综上,可得:面积关系满足S1+S2=S1图形有4个.故选D.考点:勾股定理.6、C【解题分析】
利用图象法即可解决问题;【题目详解】解:观察图象可知:当时,故选:C.【题目点拨】本题考查反比例函数图象上的点的特征,解题的关键是读懂图象信息,学会利用图象解决问题,属于中考常考题型.7、C【解题分析】
根据点P所在象限先确定P点横纵坐标都是负数,根据P到x轴和y轴的距离确定点的坐标.【题目详解】解:∵点P(x,y)在第三象限,
∴P点横纵坐标都是负数,
∵P到x轴和y轴的距离分别为3、4,
∴点P的坐标为(-4,-3).
故选:C.【题目点拨】此题主要考查了点的坐标,关键是掌握到x轴的距离=纵坐标的绝对值,到y轴的距离=横坐标的绝对值.8、B【解题分析】
利用相似三角形周长的比等于相似比得到两三角形的周长的比为2:1,于是可设两三角形的周长分别为2xcm,xcm,所以2x﹣x=12,然后解方程求出x后,得出2x即可.【题目详解】解:∵两个相似三角形的最短边分别为4cm和2cm,∴两三角形的周长的比为4:2=2:1,设两三角形的周长分别为2xcm,xcm,则2x﹣x=12,解得x=12,所以2x=24,即大三角形的周长为24cm.故选:B.【题目点拨】本题考查了相似三角形的性质:相似三角形的对应角相等,对应边的比相等;相似三角形的周长的比等于相似比;相似三角形的面积的比等于相似比的平方.9、D【解题分析】
根据轴对称图形的概念求解即可.【题目详解】A、不是轴对称图形,故此选项错误;
B、不是轴对称图形,故此选项错误;
C、不是轴对称图形,故此选项错误;
D、是轴对称图形,故此选项正确.
故选:D.【题目点拨】本题主要考查了轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.10、A【解题分析】
把所给点的横纵坐标代入反比例函数的解析式,求出、的值,比较大小即可.【题目详解】点在反比例函数的图象上,,点在反比例函数的图象上,,.故选:.【题目点拨】本题主要考查反比例函数图象上点的坐标特征,所有在反比例函数上的点的横纵坐标的积等于比例系数.二、填空题(每小题3分,共24分)11、2.5【解题分析】
∵EO是AC的垂直平分线,∴AE=CE,设CE=x,则ED=AD-AE=4-x,在Rt△CDE中,CE2=CD2+ED2,即x2=22+(4-x)2,解得x=2.5,即CE的长为2.5,故答案为2.5.12、3【解题分析】
将已知的两式相乘即可得出答案.【题目详解】解:∵∴∴的值等于3.【题目点拨】本题主要考查了因式分解的解法:提公因式法.13、22.1【解题分析】∵一组数据:25,29,20,x,11,它的中位数是21,所以x=21,∴这组数据为11,20,21,25,29,∴平均数=(11+20+21+25+29)÷5=22.1.故答案是:22.1.【题目点拨】找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.14、1.【解题分析】
利用待定系数法即可解决问题;【题目详解】∵点(1,7)在函数y=ax+3的图象上,∴7=1a+3,∴a=1,故答案为:1.【题目点拨】本题考查一次函数图象上点的坐标特征,解题的关键是熟练掌握待定系数法解决问题,属于中考常考题型.15、13.1.【解题分析】
根据加权平均数的计算公式计算可得.【题目详解】解:该校篮球队队员的平均年龄为=13.1故答案为13.1.【题目点拨】本题主要考查加权平均数的计算方法,解题的关键是掌握平均数的定义和计算公式.16、540°.【解题分析】
根据多边形对角线的条数求出多边形的边数,再根据多边形的内角和公式求出即可.【题目详解】设多边形的边数为n,∵多边形有5条对角线,∴=5,解得:n=5或n=﹣2(舍去),即多边形是五边形,所以多边形的内角和为(5﹣2)×180°=540°,故答案为:540°.【题目点拨】本题考查了多边形的对角线和多边形的内角,能正确求出多边形的边数是解此题的关键,注意:边数为n的多边形的对角线的条数是,边数为n的多边形的内角和=(n-2)×180°.17、①②③④【解题分析】
由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA,由平行线的性质可知∠BAC=∠DCA,从而得到∠ACB=∠BAC,故此AB=BC,从而可知四边形ABCD为菱形,最后依据菱形的性质判断即可.【题目详解】由翻折的性质可知;AD=AB,DC=BC,∠DAC=∠BCA.∵AB∥DC,∴∠BAC=∠DCA.∴∠BCA=∠BAC.∴AB=BC.∴AB=BC=CD=AD.∴四边形ABCD为菱形.∴AD∥BC,AB=CD,AC⊥BD,AO=CO.故答案为①②③④【题目点拨】本题主要考查的是翻折的性质、菱形的性质和判定、等腰三角形的判定、平行线的性质,证得四边形ABCD为菱形是解题的关键.18、.【解题分析】
试题分析:∵A1(0,0),A2(4,0),A3(8,0),A4(12,0),…,∴An(4n﹣4,0).∵直线y=kx+2与此折线恰有2n(n≥1,且为整数)个交点,∴点An+1(4n,0)在直线y=kx+2上,∴0=4nk+2,解得:k=.故答案为.考点:一次函数图象上点的坐标特征;坐标与图形变化﹣平移;规律型;综合题.三、解答题(共66分)19、【解题分析】
直接根据题意,列出式子,进行因式分解即可.【题目详解】()【题目点拨】此题主要考查因式分解的实际应用,熟练掌握,即可解题.20、(1)x1=,x1=;(1)x1=﹣,x1=﹣1.【解题分析】
(1)整理后求出b1﹣4ac的值,再代入公式求出即可;(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】(1)x(1﹣x)=x1﹣1,整理得:x1﹣x﹣1=0,△=b1﹣4ac=(﹣1)1﹣4×1×(﹣1)=5,x,∴x1,x1;(1)(1x+5)1﹣3(1x+5)+1=0,(1x+5﹣1)(1x+5﹣1)=0,1x+5﹣1=0,1x+5﹣1=0,∴x1,x1=﹣1.【题目点拨】本题考查了解一元二次方程,能选择适当的方法解一元二次方程是解答此题的关键.21、(1)B(0,4),D(0,-1);(2)S(x>-2);(3)存在,满足条件的点E的坐标为(8,)或(﹣8,)或(﹣2,).【解题分析】
(1)利用y轴上的点的坐标特征即可得出结论;(2)先求出点M的坐标,再分两种情况讨论:①当P在y轴右边时,用三角形的面积之和即可得出结论,②当P在y轴左边时,用三角形的面积之差即可得出结论;(3)分三种情况利用对角线互相平分的四边形是平行四边形和线段的中点坐标的确定方法即可得出结论.【题目详解】(1)∵点B是直线AB:yx+4与y轴的交点坐标,∴B(0,4).∵点D是直线CD:yx﹣1与y轴的交点坐标,∴D(0,﹣1);(2)如图1.由,解得:.∵直线AB与CD相交于M,∴M(﹣2,).∵B(0,4),D(0,﹣1),∴BD=2.∵点P在射线MD上,∴分两种情况讨论:①当P在y轴右边时,即x≥0时,S=S△BDM+S△BDP2(2+x);②当P在y轴左边时,即-2<x<0时,S=S△BDM-S△BDP2(2-|x|);综上所述:S=(x>-2).(3)如图2,由(1)知,S,当S=20时,20,∴x=3,∴P(3,﹣2).分三种情况讨论:①当BP是对角线时,取BP的中点G,连接MG并延长取一点E'使GE'=GM,设E'(m,n).∵B(0,4),P(3,﹣2),∴BP的中点坐标为(,1).∵M(﹣2,),∴1,∴m=8,n,∴E'(8,);②当AB为对角线时,同①的方法得:E(﹣8,);③当MP为对角线时,同①的方法得:E''(﹣2,).综上所述:满足条件的点E的坐标为(8,)、(﹣8,)、(﹣2,).【题目点拨】本题是一次函数综合题,主要考查了三角形的面积的计算方法,平行四边形的性质,解(2)掌握三角形的面积的计算方法,解(3)的关键是分类讨论的思想解决问题.22、(1)点C的坐标为-6,-2;(2)(-4,-6)或(-8,2)或(4,-2).【解题分析】
(1)由“AAS”可证△ACD≌△BAO,可得OA=CD=2,AD=OB=4,即可求点C坐标;(2)分三种情况讨论,由平行四边形的性质和中点坐标公式可求点H坐标.【题目详解】解:(1)如图1,过C作CM丄x轴于∠MAC+∠OAB=90°,∠OAB+∠OBA=90°,则∠MAC=∠OBA,在△MAC和△OBA中,∠CMA=∠AOB=90°∠MAC=∠OBA∴△MAC≌△OBAAAS∴CM=OA=2,MA=OB=4,∴OM=OA+AM=2+4=6,∴点C的坐标为-6,-2,(2)设点H(x,y),∵OA=2,OB=4,∴A(-2,0),点B(0,-4),若四边形ABHC是平行四边形,∴AH与BC互相平分,∴-6+02=-2+x∴x=-4,y=-6,∴点H坐标(-4,-6).若四边形ABCH是平行四边形,∴AC与BH互相平分,∴-2-62=x+0∴x=-8,y=2,∴点H坐标(-8,2),若四边形CAHB是平行四边形,∴AB与CH互相平分
∴-2+02=-6+x∴x=4,y=-2,∴点H坐标(4,-2),综上所述:点H坐标为(-4,-6)或(-8,2)或(4,-2).【题目点拨】本题考查了平行四边形的判定和性质,全等三角形的判定和性质,等腰直角三角形的性质,利用分类讨论思想解决问题是本题的关键.23、300千米/小时【解题分析】
设动车速度为千米/小时,则高铁速度为千米/小时,根据题意列出分式方程即可求解.【题目详解】设动车速度为千米/小时,则高铁速度为千米/小时,由题意,可列方程为.解得.经检验,.是原方程的根.所以高铁的速度为:千米/小时答:高铁的速度为300千米/小时.【题目点拨】此题主要考查分式方程的应用,解题的关键是根据题意找到等量关系.24、(1)见解析;(2)413cm.【解题分析】
(1)求出AD的长,再根据勾股定理的逆定理判断即可;(2)根据勾股定理求出BC即可.【题目详解】(1)证明:∵AB=13ccm,BD=8cm,∴AD=AB﹣BD=5cm,∴AC=13cm,CD=12cm,∴AD2+CD2=AC2,∴∠ADC=90°,即△ADC是直角三角形;(2)在Rt△BDC中,∠BDC=180°﹣90°=90°,BD=8cm,CD=12cm,由勾股定理得:BC=BD2+CD2=82即BC的长是413cm.【题目点拨】本题考查了勾股定理和勾股定理的逆定理,能熟记勾股定理的逆定理的内容是解此题的关键.25、(1)a=3,b=0.3,m=15,n=0.04(2)(3)24【解题分析】
(1)首先通过统计表中任意一组已知的数据,用总人数=频数÷频率求出总人数,再用频数=总人数×频率求出a值,再用总人数减去其他组别的频数和,得到第2组的频数m值,最后用频率=频数÷总人数得出b值和n值.(2)中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 唾液腺疾病护理
- 去大脑强直护理
- 危重病人急救护理常规
- 电工基础题目课程设计
- 《草房子》阅读教学教案
- 电子通信工程课程设计
- 电子行业 研究报告
- 电子秒表计时器课程设计
- 租赁房屋终止合同(2篇)
- 物流合同范本(2篇)
- 人教部编版六年级道德与法治上册第6课《人大代表为人民》精美课件
- 期末 (试题) -2024-2025学年外研版(三起)(2024)英语三年级上册
- 2023年12月英语四级真题及答案-第1套
- 药事管理学实践报告总结
- 物理化学实验B智慧树知到课后章节答案2023年下北京科技大学
- 自来水厂机电安装施工方案范本
- (完整版)体育理论部分练习题
- 电力行业企业安全生产岗位责任清单
- HXD3C型机车停放制动装置原理与操作
- 《化学毒物伤害院内洗消流程处置专家共识》(2021)要点汇编
- 土建劳务合同范本
评论
0/150
提交评论