![四川省泸州市名校2024届数学八下期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view11/M00/1B/1E/wKhkGWXXetmAb8vPAAIbR2br5qA194.jpg)
![四川省泸州市名校2024届数学八下期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view11/M00/1B/1E/wKhkGWXXetmAb8vPAAIbR2br5qA1942.jpg)
![四川省泸州市名校2024届数学八下期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view11/M00/1B/1E/wKhkGWXXetmAb8vPAAIbR2br5qA1943.jpg)
![四川省泸州市名校2024届数学八下期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view11/M00/1B/1E/wKhkGWXXetmAb8vPAAIbR2br5qA1944.jpg)
![四川省泸州市名校2024届数学八下期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view11/M00/1B/1E/wKhkGWXXetmAb8vPAAIbR2br5qA1945.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
四川省泸州市名校2024届数学八下期末复习检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每小题3分,共30分)1.某区为了解5600名初中生的身高情况,抽取了300名学生进行身高测量.在这个问题中,样本是()A.300 B.300名学生 C.300名学生的身高情况 D.5600名学生的身高情况2.运用分式基本性质,等式中缺少的分子为()A.a B.2a C.3a D.4a3.如图,在平行四边形中,与交于点,点在上,,,,点是的中点,若点以/秒的速度从点出发,沿向点运动:点同时以/秒的速度从点出发,沿向点运动,点运动到点时停止运动,点也时停止运动,当点运动()秒时,以点、、、为顶点的四边形是平行四边形.A.2 B.3 C.3或5 D.4或54.一元二次方程的解是()A. B. C., D.5.如图,在矩形ABCD中,点E,F分别在边AB,BC上,且AE=AB,将矩形沿直线EF折叠,点B恰好落在AD边上的点P处,连接BP交EF于点Q,对于下列结论:①EF=2BE;②PF=2PE;③FQ=3EQ;④△PBF是等边三角形,其中正确的是()A.①②③ B.②③④ C.①②④ D.①③④6.下列命题是真命题的是()A.对角线相等的四边形是平行四边形 B.对角线互相平分且相等的四边形是平行四边形C.对角线互相平分的四边形是平行四边形 D.对角线互相垂直的四边形是平行四边形7.数据3,7,2,6,6的中位数是()A.6 B.7 C.2 D.38.如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是()A. B. C. D.9.要测量河岸相对两点A、B的距离,已知AB垂直于河岸BF,先在BF上取两点C、D,使CD=CB,再过点D作BF的垂线段DE,使点A、C、E在一条直线上,如图,测出BD=10,ED=5,则AB的长是()A.2.5 B.10 C.5 D.以上都不对10.将一张正方形纸片,按如图步骤①,②,沿虚线对折两次,然后沿③中的虚线剪去一个角,展开铺平后的图形是()A. B. C. D.二、填空题(每小题3分,共24分)11.若不等式组的解集是,则m的值是________.12.某鞋店试销一种新款女鞋,销售情况如下表所示:型号
22
22.5
23
23.5
24
24.5
25
数量(双)
3
5
10
15
8
3
2
鞋店经理最关心的是哪种型号的鞋销量最大.对他来说,下列统计量中最重要的是()A.平均数B.众数C.中位数D.方差13.若是方程的两个实数根,则_______.14.如图,平行四边形ABCD中,,,AE平分交BC于点E,则CE的长为______.15.如图,把一个正方形的纸片对折两次,然后剪下一个角,为了得到一个锐角为的菱形,剪口与折痕所成的角的度数应为______或______.16.某地出租车行驶里程()与所需费用(元)的关系如图.若某乘客一次乘坐出租车里程12,则该乘客需支付车费__________元.17.若ab=﹣2,a+b=1,则代数式a2b+ab2的值等于_____.18.某同学在体育训练中统计了自己五次“1分钟跳绳”成绩,并绘制了如图所示的折线统计图,这五次“1分钟跳绳”成绩的中位数是__________个.三、解答题(共66分)19.(10分)在平行四边形ABCD中,点O是对角线BD中点,点E在边BC上,EO的延长线与边AD交于点F,连接BF、DE,如图1.(1)求证:四边形BEDF是平行四边形;(2)在(1)中,若DE=DC,∠CBD=45°,过点C作DE的垂线,与DE、BD、BF分别交于点G、H、R,如图2.①当CD=6,CE=4时,求BE的长.②探究BH与AF的数量关系,并给予证明.20.(6分)下面是小东设计的“过直线外一点作这条直线的平行线”的尺规作图过程.已知:如图1,直线l及直线l外一点A.求作:直线AD,使得AD∥l.作法:如图2,①在直线l上任取一点B,连接AB;②以点B为圆心,AB长为半径画弧,交直线l于点C;③分别以点A,C为圆心,AB长为半径画弧,两弧交于点D(不与点B重合);④作直线AD.所以直线AD就是所求作的直线.根据小东设计的尺规作图过程,完成下面的证明.(说明:括号里填推理的依据)证明:连接CD.∵AD=CD=__________=__________,∴四边形ABCD是().∴AD∥l().21.(6分)平面直角坐标系中,设一次函数的图象是直线.(1)如果把向下平移个单位后得到直线,求的值;(2)当直线过点和点时,且,求的取值范围;(3)若坐标平面内有点,不论取何值,点均不在直线上,求所需满足的条件.22.(8分)如图,四边形ABCD中,AB=10,BC=13,CD=12,AD=5,AD⊥CD,求四边形ABCD的面积.23.(8分)如图,已知直线与x轴交于点,与y轴交于点,把直线沿x轴的负方向平移6个单位得到直线,直线与x轴交于点C,与y轴交于点D,连接BC.如图,分别求出直线和的函数解析式;如果点P是第一象限内直线上一点,当四边形DCBP是平行四边形时,求点P的坐标;如图,如果点E是线段OC的中点,,交直线于点F,在y轴的正半轴上能否找到一点M,使是等腰三角形?如果能,请求出所有符合条件的点M的坐标;如果不能,请说明理由.24.(8分)如图,边长为1的菱形ABCD中,∠DAB=60∘,连结对角线AC,以AC为边作第二个菱形ACEF,使∠FAC=60∘,连结AE,再以AE为边作第三个菱形AEGH使∠HAE=60∘25.(10分)如图,E、F分别为△ABC的边BC、CA的中点,延长EF到D,使得DF=EF,连接DA、DB、AE.(1)求证:四边形ACED是平行四边形;(2)若AB=AC,试说明四边形AEBD是矩形.26.(10分)(1)计算:(2)解方程:-1=
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
根据样本的定义即可判断.【题目详解】依题意可知样本是300名学生的身高情况故选C.【题目点拨】此题主要考查统计分析,解题的关键是熟知样本的定义.2、D【解题分析】
根据分式的基本性质即可求出答案.【题目详解】解:,故选择:D.【题目点拨】本题考查分式的运算,解题的关键是熟练运用分式的基本性质,本题属于基础题型.3、C【解题分析】
由四边形ABCD是平行四边形得出:AD∥BC,AD=BC,,证得,求出AD的长,得出EC的长,设当点P运动t秒时,点P、Q、E、F为顶点的四边形是平行四边形,根据题意列出方程并解方程即可得出结果.【题目详解】解:∵四边形是平行四边形,∴,∴,且∴∴,∵点是的中点∴,设当点P运动t秒时,以点、、、为顶点的四边形是平行四边形,∴∴,或∴或5故选:C.【题目点拨】本题考查了平行四边形的判定与性质、等腰三角形的判定与性质、一元一次方程的应用等知识,熟练掌握平行四边形的判定与性质是解决问题的关键.4、C【解题分析】试题解析:,或,.故选C.5、D【解题分析】
求出BE=2AE,根据翻折的性质可得PE=BE,由此得出∠APE=30°,然后求出∠AEP=60°,再根据翻折的性质求出∠BEF=60°,根据直角三角形两锐角互余求出∠EFB=30°,然后根据直角三角形30°角所对的直角边等于斜边的一半可得EF=2BE,判断出①正确;利用30°角的正切值求出PF=PE,判断出②错误;求出BE=2EQ,EF=2BE,然后求出FQ=3EQ,判断出③正确;求出∠PBF=∠PFB=60°,然后得到△PBF是等边三角形,故④正确.【题目详解】∵AE=AB,∴BE=2AE,由翻折的性质得:PE=BE,∴∠APE=30°,∴∠AEP=90°﹣30°=60°,∴∠BEF=(180°﹣∠AEP)=(180°﹣60°)=60°,∴∠EFB=90°﹣60°=30°,∴EF=2BE,故①正确;∵BE=PE,∴EF=2PE,∵EF>PF,∴PF<2PE,故②错误;由翻折可知EF⊥PB,∴∠EBQ=∠EFB=30°,∴BE=2EQ,EF=2BE,∴FQ=3EQ,故③正确;由翻折的性质,∠EFB=∠EFP=30°,则∠BFP=30°+30°=60°,∵∠PBF=90°﹣∠EBQ=90°﹣30°=60°,∴∠PBF=∠PFB=60°,∴△PBF是等边三角形,故④正确.故选D.【题目点拨】本题考查了翻折变换的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,直角三角形两锐角互余的性质,等边三角形的判定等知识,熟记各性质并准确识图是解题的关键.6、C【解题分析】
根据对角线互相平分的四边形是平行四边形;对角线互相平分且相等的四边形是矩形;对角线互相平分的四边形是平行四边形;对角线互相垂直平分的四边形是菱形,即可做出解答。【题目详解】解:A、对角线相等的四边形是平行四边形,说法错误,应是对角线互相平分的四边形是平行四边形;B、对角线互相平分且相等的四边形是平行四边形,说法错误,应是矩形;C、对角线互相平分的四边形是平行四边形,说法正确;D、对角线互相垂直平分的四边形不一定是平行四边形,错误;故选:C.【题目点拨】本题主要考查了平行四边形,以及特殊的平行四边形的判定,关键是熟练掌握各种四边形的判定方法.7、A【解题分析】
将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数.如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.【题目详解】解:将数据小到大排列2,3,6,6,7,所以中位数为6,故选A.【题目点拨】本题考查了中位数,正确理解中位数的意义是解题的关键.8、B【解题分析】
根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.【题目详解】根据题意列树状图得:∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,∴两个指针同时指在偶数上的概率为:,故选B【题目点拨】本题考查了列表法与树状图法求概率的知识,概率=所求情况数与总情况数之比.熟练掌握列表法与树状图法及概率公式是解题关键.9、C【解题分析】∵AB⊥BD,ED⊥AB,∴∠ABC=∠EDC=90∘,在△ABC和△EDC中,,∴△ABC≌△EDC(ASA),∴AB=ED=5.故选C.10、B【解题分析】
按照题目要求弄清剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,可得正确答案;或动手操作,同样可得正确答案.【题目详解】解:由题意知,剪去的是对角线互相垂直平分的四边形,即为菱形,又菱形的顶点在折痕上,故选B.【题目点拨】本题考查了图形的折叠和动手操作能力,对此类问题,在不容易想象的情况下,动手操作不失为一种解决问题的有效方法.二、填空题(每小题3分,共24分)11、2【解题分析】
分别求出每个不等式的解集,取共同部分,即可得到m的值.【题目详解】解:,解得:,∵不等式组的解集为:,∴;故答案为:2.【题目点拨】本题考查了由不等式组的解集求参数,解题的关键是根据不等式组的解集求参数.12、B【解题分析】
根据题意可得:鞋店经理最关心的是,哪种型号的鞋销量最大,即各型号的鞋的众数.【题目详解】鞋店经理最关心的是,哪种型号的鞋销量最大,而众数是数据中出现次数最多的数,故鞋店经理关心的是这组数据的众数.
故选:B.13、10【解题分析】试题分析:根据韦达定理可得:a+b=2,ab=-3,则=4-2×(-3)=10.考点:韦达定理的应用14、4【解题分析】
由平行四边形的性质得出AB=CD=6,AD∥BC,得出∠DAE=∠BEA,证出∠BEA=∠BAE,得出BE=AB,即可得出CE的长.【题目详解】解:∵四边形ABCD是平行四边形,∴AB=CD=6,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=6,∴CE=BC−BE=10−6=4;故答案为:4【题目点拨】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,并能进行推理计算是解决问题的关键.15、【解题分析】
根据翻折变换的性质及菱形的判定进行分析从而得到最后答案.【题目详解】解:一张长方形纸片对折两次后,剪下一个角,折痕为对角线,因为折痕相互垂直平分,所以四边形是菱形,而菱形的两条对角线分别是两组对角的平分线,所以当剪口线与折痕角成30°时,其中有内角为2×30°=60°,可以得到一个锐角为的菱形.或角等于60°,内角分别为120°、60°、120°、60°,也可以得到一个锐角为的菱形.故答案为:30°或60°.【题目点拨】本题考查了折叠问题,同时考查了菱形的判定及性质,以及学生的动手操作能力.16、10【解题分析】
根据函数图象,设y与x的函数关系式为y=kx+b,运用待定系数法即可得到函数解析式,再将x=11代入解析式就可以求出y的值.【题目详解】解:由图象知,y与x的函数关系为一次函数,并且经过点(1,5)、(4,8),设该一次函数的解析式为y=kx+b,则有:,解得:,∴y=x+1.将x=11代入一次函数解析式,故出租车费为10元.故答案为:10.【题目点拨】此题考查了待定系数法求一次函数的解析式的运用,由函数值求自变量的值的运用,解答时理解函数图象是重点,求出函数的解析式是关键.17、﹣1【解题分析】
直接将要求值的代数式提取公因式ab,进而把已知数据代入求出答案.【题目详解】∵ab=-1,a+b=1,∴a1b+ab1=ab(a+b)=-1×1=-1.故答案为-1.【题目点拨】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.18、1.【解题分析】
解:由图可知,把数据从小到大排列的顺序是:180、182、1、185、186,中位数是1.故答案为1.【题目点拨】本题考查折线统计图;中位数.三、解答题(共66分)19、(1)详见解析;(2)①4﹣2;②AF=BH,详见解析【解题分析】
(1)由“ASA”可得△BOE≌△DOF,可得DF=BE,可得结论;(2)①由等腰三角形的性质可得EN=CN=2,由勾股定理可求DN,由等腰三角形的性质可求BN的长,即可求解;②如图,过点H作HM⊥BC于点M,由“AAS”可证△HMC≌△CND,可得HM=CN,由等腰直角三角形的性质可得BH=HM,即可得结论.【题目详解】(1)证明:∵平行四边形ABCD中,点O是对角线BD中点,∴AD∥BC,BO=DO,∴∠ADB=∠CBD,且∠DOF=∠BOE,BO=DO,∴△BOE≌△DOF(ASA)∴DF=BE,且DF∥BE,∴四边形BEDF是平行四边形;(2)①如图2,过点D作DN⊥EC于点N,∵DE=DC=6,DN⊥EC,∴EN=CN=2,∴DN===4,∵∠DBC=45°,DN⊥BC,∴∠DBC=∠BDN=45°,∴DN=BN=4,∴BE=BN﹣EN=4﹣2;故答案为:BE=4﹣2.②AF=BH,理由如下:如图,过点H作HM⊥BC于点M,∵DN⊥EC,CG⊥DE,∴∠CEG+∠ECG=90°,∠DEN+∠EDN=90°,∴∠EDN=∠ECG,∵DE=DC,DN⊥EC,∴∠EDN=∠CDN,EC=2CN,∴∠ECG=∠CDN,∵∠DHC=∠DBC+∠BCH=45°+∠BCH,∠CDB=∠BDN+∠CDN=45°+∠CDN,∴∠CDB=∠DHC,∴CD=CH,且∠HMC=∠DNC=90°,∠ECG=∠CDN,∴△HMC≌△CND(AAS)∴HM=CN,∵HM⊥BC,∠DBC=45°,∴∠BHM=∠DBC=45°,∴BM=HM,∴BH=HM,∵AD=BC,DF=BE,∴AF=EC=2CN,∴AF=2HM=BH.故答案为:AF=BH.【题目点拨】本题是四边形综合题,考查了平行四边形的性质,全等三角形的判定和性质,勾股定理,等腰直角三角形的性质,添加恰当辅助线构造全等三角形是本题的关键.20、BC=AB,菱形(四边相等的四边形是菱形),菱形的对边平行.【解题分析】
由菱形的判定及其性质求解可得.【题目详解】证明:连接CD.∵AD=CD=BC=AB,∴四边形ABCD是菱形(四条边都相等的四边形是菱形).∴AD∥l(菱形的对边平行)【题目点拨】此题考查菱形的判定,掌握判定定理是解题关键.21、(1);(2)且;(3)【解题分析】
(1)根据一次函数平移的规律列方程组求解;(2)将两点的坐标代入解析式得出方程组,根据方程组可得出a,b的等量关系式,然后根据b的取值范围,可求出a的取值范围,另外注意一次函数中二次项系数2a-3≠0的限制条件;(3)先根据点P的坐标求出动点P所表示的直线表达式,再根据直线与平行得出结果.【题目详解】解:(1)依题意得,.(2)过点和点,两式相减得;解法一:,当时,;当时,.,随的增大而增大且,.,.且.解法二:,,解得.,∴.且.(3)设,.消去得,动点的图象是直线.不在上,与平行,,.【题目点拨】本题考查一次函数的图像与性质,以及一次函数平移的规律,掌握基本的性质是解题的关键.22、S四边形ABCD=1.【解题分析】试题分析:连接AC,过点C作CE⊥AB于点E,在Rt△ACD中根据勾股定理求得AC的长,再由等腰三角形的三线合一的性质求得AE的长,在Rt△CAE中,根据勾股定理求得CE的长,根据S四边形ABCD=S△DAC+S△ABC即可求得四边形ABCD的面积.试题解析:连接AC,过点C作CE⊥AB于点E.∵AD⊥CD,∴∠D=1°.在Rt△ACD中,AD=5,CD=12,AC=.∵BC=13,∴AC=BC.∵CE⊥AB,AB=10,∴AE=BE=AB=.在Rt△CAE中,CE=.∴S四边形ABCD=S△DAC+S△ABC=23、(1);;(2);(3)M
点坐标为,,,.【解题分析】
用待定系数法可求直线的解析式,平移可得直线的解析式由四边形DCBP是平行四边形,可得,,根据两点公式可求P的坐标.分,,三种情况讨论,根据勾股定理可求M的坐标.【题目详解】设直线的解析式为,且过,,,解得:,,解析式,把直线沿x轴的负方向平移6个单位得到直线,直线的解析式;设,直线与y轴交于D点,交x轴于C点,,,,,,四边形DCBP是平行四边形,,,,,不合题意舍去,;点E是线段OC的中点,,,,,,,在中,,,,,当点M与
点O重合时,即F
,当时,是等腰三角形,当时,则,
或,当时,设M
,,,,综上所述:M
点坐标为,,,.【题目点拨】本题考查了四边形的综合题,待定系数法求一次函数解析式,平行四边形的性质,等腰三角形的性质,利用分类思想解决问题是本题的关键.24、(【解题分析】
连接DB于AC相交于M,根据已知和菱形的性质可分别求得AC,AE,AG的长,从而可发现规律根据规律不难求得第2015个菱形的边长.【题目详解】:连接DB,如图所示:
∵四边形ABCD是菱形,
∴AD=AB.AC⊥DB,
∵∠DAB=60°,
∴△
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 人教版地理八年级下册:7.4 《祖国的神圣领土-台湾省》 听课评课记录4
- 环保节能教育在办公领域的应用与推广
- 现代建筑设计与生态平衡的和谐共生
- 电商平台产品定价与促销策略
- 生物医药行业的创新投资路径探索
- 人教版七年级数学上册:4.1.2《点、线、面、体》听评课记录
- 【基础卷】同步分层练习:四年级下册语文第26课《宝葫芦的秘密》(含答案)
- 现代办公室的信息化管理与信息筛选技能培养
- 环境科学实践课的师生互动与学习效果研究
- 现代教学理念在艺术教育中的实践
- 心肺复苏 视频
- 《性激素临床应用》课件
- 2024年九省联考高考数学卷试题真题答案详解(精校打印)
- 项目式学习指导手册:每个教师都能做PBL
- 保育师(四级)理论知识考核要素细目表
- 洗涤塔操作说明
- 绘本分享《狐狸打猎人》
- 故障处理记录和总结分析表
- 2023北师大版小学数学六年级下册教材分析
- 火龙罐技术课件
- 撤销因私出国(境)登记备案国家工作人员通知书
评论
0/150
提交评论