2024届湖南省郴州市临武县数学八年级第二学期期末考试模拟试题含解析_第1页
2024届湖南省郴州市临武县数学八年级第二学期期末考试模拟试题含解析_第2页
2024届湖南省郴州市临武县数学八年级第二学期期末考试模拟试题含解析_第3页
2024届湖南省郴州市临武县数学八年级第二学期期末考试模拟试题含解析_第4页
2024届湖南省郴州市临武县数学八年级第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖南省郴州市临武县数学八年级第二学期期末考试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列图形中既是中心对称图形,又是轴对称图形的是()A. B.C. D.2.若a=﹣0.32,b=﹣3﹣2,c=(﹣)﹣2,d=(﹣)0,则()A.a<b<c<d B.b<a<d<c C.a<d<c<b D.c<a<d<b3.如图,等腰三角形的底边长为,面积是,腰的垂直平分线分别交边于点.若点为边的中点,点为线段EF上一动点,则周长的最小值为()A. B. C. D.4.下列命题是假命题的是()A.直角三角形中,30°角所对的直角边等于斜边的一半B.三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等C.平行四边形是中心对称图形D.对角线相等的四边形是平行四边形5.在平面直角坐标系中,二次函数的图象如图所示,点,是该二次函数图象上的两点,其中,则下列结论正确的是()A. B. C.函数的最小值是 D.函数的最小值是6.下列图形是中心对称图形,但不是轴对称图形的是(

)A. B. C. D.7.在中,AB=15,AC=20,BC边上高AD=12,则BC的长为()A.25 B.7 C.25或7 D.不能确定8.如图,在同一直线上,甲、乙两人分别从A,B两点同时向右出发,甲、乙均为匀速,图2表示两人之间的距离y(m)与所经过的时间t(s)之间的函数关系图象,若乙的速度为1.5m/s,则经过30s,甲自A点移动了()A.45m B.7.2m C.52.2m D.57m9.下列变形是因式分解的是()A.x(x+1)=x2+x B.m2n+2n=n(m+2)C.x2+x+1=x(x+1)+1 D.x2+2x﹣3=(x﹣1)(x+3)10.调查50名学生的年龄,列频数分布表时,这些学生的年龄落在5个小组中,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是()A.20 B.30 C.0.4 D.0.6二、填空题(每小题3分,共24分)11.在学校组织的科学素养竞赛中,八(3)班有25名同学参赛,成绩分为A,B,C,D四个等级,其中相应等级的得分依次记为90分,80分,70分,60分,现将该班的成绩绘制成扇形统计图如图所示,则此次竞赛中该班成绩在70分以上(含70分)的人数有_______人.12.菱形的周长为12,它的一个内角为60°,则菱形的较长的对角线长为______.13.矩形的一边长是3.6㎝,两条对角线的夹角为60º,则矩形对角线长是___________.14.八年级(4)班有男生24人,女生16人,从中任选1人恰是男生的事件是_______事件(填“必然”或“不可能”或“随机”).15.把化为最简二次根式,结果是_________.16.在学校的卫生检查中,规定各班的教室卫生成绩占30%,环境卫生成绩占40%,个人卫生成绩占30%.八年级一班这三项成绩分别为85分,90分和95分,求该班卫生检查的总成绩_____.17.如图,折叠矩形纸片的一边AD,使点D落在BC边上的点F处,BC=10cm,AB=8cm,则EC的长为_________.18.在△ABC中,∠C=90°,若b=7,c=9,则a=_____.三、解答题(共66分)19.(10分)如图,平行四边形ABCD中,AB=6cm,BC=10cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连接CE、DF.(1)求证:四边形CEDF是平行四边形;(2)当AE的长是多少时,四边形CEDF是矩形?20.(6分)某公司生产某环保产品的成本为每件40元,经过市场调研发现:这件产品在未来两个月天的日销量件与时间天的关系如图所示未来两个月天该商品每天的价格元件与时间天的函数关系式为:根据以上信息,解决以下问题:请分别确定和时该产品的日销量件与时间天之间的函数关系式;请预测未来第一月日销量利润元的最小值是多少?第二个月日销量利润元的最大值是多少?为创建“两型社会”,政府决定大力扶持该环保产品的生产和销售,从第二个月开始每销售一件该产品就补贴a元有了政府补贴以后,第二个月内该产品日销售利润元随时间天的增大而增大,求a的取值范围.21.(6分)如图,在ABCD中,点P是AB边上一点(不与A,B重合),过点P作PQ⊥CP,交AD边于点Q,且,连结.

(1)求证:四边形是矩形;

(2)若CP=CD,AP=2,AD=6时,求的长.22.(8分)如图,在菱形ABCD中,AC=8,BD=6,求△ABC的周长.23.(8分)我们将(a+b)、(a-b)称为一对“对偶式”,因为(a+b(1)比较大小17-2________16-3(用“>(2)已知x=5+25-2,(3)计算:224.(8分)如图,正方形网格中,每个小正方形的边长均为1,每个小正方形的顶点叫格点.(1)在图①中,以格点为端点,画线段MN=;(2)在图②中,以格点为顶点,画正方形ABCD,使它的面积为1.25.(10分)如图,直线y=kx+k交x轴,y轴分别于A,C,直线BC过点C交x轴于B,OC=3OA,∠CBA=45∘.

(1)求直线BC的解析式;

(2)动点P从A出发沿射线AB匀速运动,速度为2个单位/秒,连接CP,设△PBC的面积为S,点P的运动时间为t秒,求S与t之间的函数关系式,直接写出t的取值范围;26.(10分)一水果经销商购进了A,B两种水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售,预计每箱水果的盈利情况如下表:A种水果/箱B种水果/箱甲店11元17元乙店9元13元(1)如果甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱,请你计算出经销商能盈利多少元?(2)在甲、乙两店各配货10箱(按整箱配送),且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】

轴对称图形的定义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形;中心对称图形的定义:在同一平面内,如果把一个图形绕某一点旋转180度,旋转后的图形能和原图形完全重合,那么这个图形就叫做中心对称图形.【题目详解】解:A、不是轴对称图形,不是中心对称图形,故此选项错误;B、不是轴对称图形,是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选:D.【题目点拨】此题考查中心对称图形,轴对称图形,解题关键在于掌握其定义2、B【解题分析】

分别求出a、b、c、d的值,然后进行比较大小进行排序即可.【题目详解】解:a=﹣0.32=﹣0.09,b=﹣3﹣2=﹣,c=(﹣)﹣2=9,d=(﹣)0=1.故b<a<d<c.故选B.【题目点拨】本题考查了幂运算法则,准确计算是解题的关键.3、C【解题分析】

连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【题目详解】解:连接AD,

∵△ABC是等腰三角形,点D是BC边的中点,

∴AD⊥BC,

∴S△ABC=BC•AD=×4×AD=16,解得AD=8,

∵EF是线段AC的垂直平分线,

∴点C关于直线EF的对称点为点A,

∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD故选:C.【题目点拨】本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.4、D【解题分析】

利用直角三角形的性质、三角形的外心的性质、平行四边形的对称性及判定分别判断后即可确定正确的选项.【题目详解】解:A、直角三角形中,30°角所对的直角边等于斜边的一半,正确,是真命题;

B、三角形三条边的垂直平分线的交点到三角形的三个顶点的距离相等,正确,是真命题;

C、平行四边形是中心对称图形,正确,是真命题;

D、对角线互相平分的四边形是平行四边形,故原命题错误,是假命题,

故选:D.【题目点拨】本题考查命题与定理的知识,解题的关键是了解直角三角形的性质、三角形的外心的性质、平行四边形的对称性及判定.5、D【解题分析】

根据抛物线解析式求得抛物线的顶点坐标,结合函数图象的增减性进行解答.【题目详解】=(x+3)(x−1),则该抛物线与x轴的两交点横坐标分别是−3、1.又=,∴该抛物线的顶点坐标是(−1,−4),对称轴为x=-1.A.无法确定点A.B离对称轴x=−1的远近,故无法判断y与y的大小,故本选项错误;B.无法确定点A.B离对称轴x=−1的远近,故无法判断y与y的大小,故本选项错误;C.y的最小值是−4,故本选项错误;D.y的最小值是−4,故本选项正确。故选:D.【题目点拨】本题考查二次函数的最值,根据抛物线解析式求得抛物线的顶点坐标是解题关键6、A【解题分析】

根据轴对称图形和中心对称图形的定义解答即可.【题目详解】解:A.是中心对称图形,不是轴对称图形,故A符合题意;B.是中心对称图形,也是轴对称图形,故B不符合题意;C.是中心对称图形,也是轴对称图形,故C不符合题意;D.是轴对称图形,不是中心对称图形,故D不合题意.故选A.【题目点拨】本题考查了中心对称和轴对称图形的定义.解题的关键是掌握中心对称和轴对称图形的定义.7、C【解题分析】

已知三角形两边的长和第三边的高,未明确这个三角形为钝角三角形还是锐角三角形,所以需分情况讨论,即∠BAC是钝角还是锐角,然后利用勾股定理求解.【题目详解】解:①如图1,当△ABC为锐角三角形时,在Rt△ABD中,AB=15,AD=12,由勾股定理得

BD===9,

在Rt△ADC中,AC=20,AD=12,由勾股定理得DC===16,∴BC=BD+DC=9+16=1.

②如图2,当△ABC为钝角三角形时,同①可得BD=9,DC=16,∴BC=CD-BD=2.

故选:C.【题目点拨】本题考查了勾股定理,同时注意,当题中无图时要注意分类讨论,如本题中已知条件中没有明确三角形的形状,要分三角形为锐角三角形和钝角三角形两种情况求解,避免漏解.8、C【解题分析】

设甲与乙的距离为s,根据图像可求出解析式,即可进行求解.【题目详解】解:设甲与乙的距离为s,则关于t的函数为s=kt+b(k≠0),将(0,12)(50,0)代入得,解得k=﹣0.24,b=12,函数表达式,s=﹣0.24t+12(0≤t≤50),则30秒后,s=4.8设甲自A点移动的距离为y,则y+s=12+1.5×30解得:y=52.2∴甲自A点移动52.2m.故选:C.【题目点拨】此题主要考查一次函数的图像,解题的关键是熟知一次函数解析式的求解.9、D【解题分析】

根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【题目详解】A、是整式的乘法,故A错误;B、等式不成立,故B错误;C、没把一个多项式转化成几个整式乘积的形式,故C错误;D、把一个多项式转化成几个整式乘积的形式,故D正确;故选:D.【题目点拨】此题考查因式分解的意义,解题关键在于掌握其定义10、A【解题分析】

根据频数的定义:频数表是数理统计中由于所观测的数据较多,为简化计算,将这些数据按等间隔分组,然后按选举唱票法数出落在每个组内观测值的个数,称为(组)频数。一共5个频数,已知总频数为50,四个频数已知,即可求出其余的一个频数.【题目详解】一共5个频数,已知总频数为50,第一、二、三、五组数据个数分别是2,8,15,5,则第四组的频数是50-2-8-15-5=20,故答案为A.【题目点拨】此题主要考查对频数定义的理解,熟练掌握即可得解.二、填空题(每小题3分,共24分)11、21【解题分析】

首先根据统计图,求出此次竞赛中该班成绩在70分以上(含70分)的人数所占比例,然后已知总数,即可得解.【题目详解】根据统计图的信息,得此次竞赛中该班成绩在70分以上(含70分)的人数所占比例为此次竞赛中该班成绩在70分以上(含70分)的人数为故答案为21.【题目点拨】此题主要考查扇形统计图的相关知识,熟练掌握,即可解题.12、3【解题分析】

根据菱形的对角线互相垂直平分可得AC⊥BD,BD=2OB,菱形的对角线平分一组对角线可得∠ABO=30°,根据直角三角形30°角所对的直角边等于斜边的一半可得AO=AB,再利用勾股定理列式求出OB,即可得解.【题目详解】解:如图所示:∵菱形ABCD的周长为12,∴AB=3,AC⊥BD,BD=2OB,∵∠ABC=60°,∴∠ABO=∠ABC=30°,∴AO=AB=×3=,由勾股定理得,OB===,∴BD=2OB=3.故答案为:3.【题目点拨】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.13、7.2cm或cm【解题分析】①边长3.6cm为短边时,

∵四边形ABCD为矩形,

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB=3.6cm,

∴AC=BD=2OA=7.2cm;

②边长3.6cm为长边时,

∵四边形ABCD为矩形

∴OA=OB,

∵两对角线的夹角为60°,

∴△AOB为等边三角形,

∴OA=OB=AB,BD=2OB,∠ABD=60°,

∴OB=AB=,∴BD=;故答案是:7.2cm或cm.14、随机【解题分析】

根据必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.即可解答【题目详解】从中任选一人,可能选的是男生,也可能选的是女生,故为随机事件【题目点拨】此题考查随机事件,难度不大15、【解题分析】

直接利用二次根式的性质化简求出答案.【题目详解】.故答案为.【题目点拨】本题考查了二次根式的性质与化简,正确开平方是解题的关键.16、90分.【解题分析】试题分析:根据加权平均数的计算公式求解即可.解:该班卫生检查的总成绩=85×30%+90×40%+95×30%=90(分).故答案为90分.考点:加权平均数.17、3cm【解题分析】【分析】由矩形的性质可得CD=AB=8,AD=BC=10,由折叠的性质可得AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,由勾股定理可求出BF的长,继而可得FC的长,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,利用勾股定理即可救出CE的长.【题目详解】∵四边形ABCD为矩形,∴CD=AB=8,AD=BC=10,∵折叠矩形ABCD的一边AD,使点D落在BC边的点F处,∴AF=AD=10,DE=EF,∠AFE=∠D=90°,在Rt△ABF中,BF==6,∴FC=BC-BF=4,设CE=x,则DE=8-x,EF=DE=8-x,在Rt△CEF中,∵CF2+CE2=EF2,∴42+x2=(8-x)2,解得x=3,即CE=3cm,故答案为:3cm.【题目点拨】本题考查了矩形的性质、折叠的性质、勾股定理等,熟练掌握相关的性质及定理是解题的关键.18、4【解题分析】

利用勾股定理:a2+b2=c2,直接解答即可【题目详解】∵∠C=90°∴a2+b2=c2∵b=7,c=9,∴a===4故答案为4【题目点拨】本题考查了勾股定理,对应值代入是解决问题的关键三、解答题(共66分)19、(1)见解析;(2)时,四边形CEDF是矩形.【解题分析】

(1)先证明△GED≌△GFC,从而可得GE=GF,再根据对角线互相平分的四边形是平行四边形即可证得结论;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=90°,求得BP=3cm,再证明△ABP≌△CDE,可得∠CED=∠APB=90°,再根据有一个角是直角的平行四边形是矩形即可得.【题目详解】(1)四边形ABCD是平行四边形,∴AD//BF,∴∠DEF=∠CFE,∠EDC=∠FCD,∵GD=GC,∴△GED≌△GFC,∴GE=GF,∵GD=GC,GE=GF,∴四边形CEDF是平行四边形;(2)当AE的长是7cm时,四边形CEDF是矩形,理由如下:作AP⊥BC于P,则∠APB=∠APC=90°,∵∠B=60°,∴∠PAB=90°-∠B=30°,∴BP=AB==3cm,四边形ABCD是平行四边形,∴∠CDE=∠B=60°,DC=AB=6cm,AD=BC=10cm,∵AE=7cm,∴DE=AD-AE=3cm=BP,∴△ABP≌△CDE,∴∠CED=∠APB=90°,又∵四边形CEDF是平行四边形,∴平行四边形CEDF是矩形,即当AE=7cm时,四边形CEDF是矩形.【题目点拨】本题考查了平行四边形的判定与性质,矩形的判定,全等三角形的判定与性质,熟练掌握相关知识是解题的关键.20、;时,的最大值为元;(3)时,W随t的增大而增大.【解题分析】

利用待定系数法即可解决问题;分别构建二次函数,利用二次函数的性质即可解决问题;构建二次函数,利用二次函数的性质即可解决问题;【题目详解】解:当时,设,则有,解得,,当时,设,则有,解得,.由题意,当时,有最小值元,,时,的最大值为元由题意,对称轴,,的取值范围在对称轴的左侧时W随t的增大而增大,当,,即时,W随t的增大而增大.【题目点拨】本题考查二次函数的应用、一次函数的应用、待定系数法等知识,解题的关键是学会构建二次函数解决实际问题,属于中考常考题型.21、(1)详见解析;(2)【解题分析】

(1)证出∠A=90°即可;

(2)由HL证明Rt△CDQ≌Rt△CPQ,得出DQ=PQ,设AQ=x,则DQ=PQ=6-x,由勾股定理得出方程,解方程即可.【题目详解】(1)证明:∵∠BPQ=∠BPC+∠CPQ=∠A+∠AQP,又∠BPC=∠AQP,∴∠CPQ=∠A,∵PQ⊥CP,∴∠A=∠CPQ=90°,∴平行四边形ABCD是矩形;(2)解:∵四边形ABCD是矩形

∴∠D=∠CPQ=90°,在Rt△CDQ和Rt△CPQ中,,

∴Rt△CDQ≌Rt△CPQ(HL)),

∴DQ=PQ,

设AQ=x,则DQ=PQ=6-x

在Rt△APQ中,AQ2+AP2=PQ2

∴x2+22=(6-x)2,

解得:x=

∴AQ的长是.【题目点拨】此题考查平行四边形的性质、矩形的判定与性质,三角形全等的判定和性质,勾股定理的应用,熟练掌握平行四边形的性质,证明四边形是矩形是解题的关键.22、1.【解题分析】

利用菱形的性质结合勾股定理得出AB的长,进而得出答案.【题目详解】∵在菱形ABCD中,AC=8,BD=6,∴AB=BC,∠AOB=90°,AO=4,BO=3,∴BC=AB=,∴△ABC的周长=AB+BC+AC=5+5+8=1.【题目点拨】本题主要考查菱形的性质,利用勾股定理,求出菱形的边长,是解题的关键.23、(1)>;(2)x2+y2【解题分析】

(1)先利用分母有理化的方法化简,再比较分子即可;(2)利用x2+y2=(x+y)2﹣2xy变形计算较为简单;(3)先把各个式子进行分母有理化,再裂项相消即可.【题目详解】(1)∵17-216比较7+2与∵7>6,2>3,∴7+2>6+3,∴17-2〉(2)∵x2+y2=(x+y)2﹣2xy=(5+25-2+5=182﹣2=324﹣2=1答:x2+y2的值为1.(3)2=2(3-3)(3+3)(3-3)+2(53-35)(53+35)(5=1﹣99=99-【题目点拨】考查二次根式的化简求值,同时考查了完全平方公式的变形应用以及裂项法的应用,计算量较大.24、(1)画图见解析;(2)画图见解析.【解题分析】

(1)以3和2为直角边作出直角三角形,斜边即为所求;

(2)以3和1为直角边作出直角三角形,斜边为正方形的边长,如图②所示.【题目详解】(1)如图①所示:(2)如图②所示.【题目点拨】考查了勾股定理,熟练掌握勾股定理是解本题的关键.25、

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论