福建省泉州市2024届数学八下期末教学质量检测模拟试题含解析_第1页
福建省泉州市2024届数学八下期末教学质量检测模拟试题含解析_第2页
福建省泉州市2024届数学八下期末教学质量检测模拟试题含解析_第3页
福建省泉州市2024届数学八下期末教学质量检测模拟试题含解析_第4页
福建省泉州市2024届数学八下期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

福建省泉州市2024届数学八下期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,点A,B在反比例函数(x>0)的图象上,点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,已知点A、B的横坐标分别为1、2,若△OAC与△ABD的面积之和为3,那么k的值是()A.5 B.4 C.3 D.22.已知四边形ABCD,有以下4个条件:①AB∥CD;②AB=DC;③AD∥BC;④AD=BC.从这4个条件中选2个,不能判定这个四边形是平行四边形的是()A.①② B.①③ C.①④ D.②④3.如图,在▱ABCD中,下列结论不一定正确的是()A.∠1=∠2 B.∠1=∠3 C.AB=CD D.∠BAD=∠BCD4.四边形ABCD的对角线互相平分,要使它变为菱形,需要添加的条件是()A.AB=CD B.AC=BD C.AC⊥BD D.AD=BC5.下列命题中,正确的是()A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点B.平行四边形是轴对称图形C.三角形的中位线将三角形分成面积相等的两个部分D.一组对边平行,一组对角相等的四边形是平行四边形6.如图,点A,B,E在同一条直线上,正方形ABCD,BEFG的面积分别为m,n,H为线段DF的中点,则BH的长为()A. B. C. D.7.下列等式一定成立的是()A.9-4=5 B.58.下列图形是轴对称的是()A. B. C. D.9.不能被()整除.A.80 B.81 C.82 D.8310.如图所示,等边三角形沿射线向右平移到的位置,连接、,则下列结论:(1)(2)与互相平分(3)四边形是菱形(4),其中正确的个数是()A.1 B.2 C.3 D.4二、填空题(每小题3分,共24分)11.如图,字母A所代表的正方形面积为____.12.与向量相等的向量是__________.13.关于x的一元一次不等式组中两个不等式的解集在同一数轴上的表示如图所示,则m的值是_______.14.如图,为的中位线,点在上,且为直角,若,,则的长为__________.15.若a=,则=_____.16.如果有意义,那么x的取值范围是_____.17.若一元二次方程有两个相等的实数根,则的值是________。18.如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒个1单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.三、解答题(共66分)19.(10分)四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于H,求DH的长.20.(6分)如图,已知,点在上,点在上.(1)请用尺规作图作出的垂直平分线,交于点,交于点;(保留作图痕迹,不写作法);(2)连结,求证四边形是菱形.21.(6分)先化简,再求值:(x+2)2﹣4x(x+1),其中x=2.22.(8分)如图,已知点A、C在双曲线上,点B、D在双曲线上,AD//BC//y轴.(I)当m=6,n=-3,AD=3时,求此时点A的坐标;(II)若点A、C关于原点O对称,试判断四边形ABCD的形状,并说明理由;(III)若AD=3,BC=4,梯形ABCD的面积为,求mn的最小值.23.(8分)解分式方程:(1)(2)24.(8分)如图,BD是△ABC的角平分线,点E,F分别在BC、AB上,且DE∥AB,EF∥AC.(1)求证:BE=AF;(2)若∠ABC=60°,BD=6,求四边形ADEF的面积。25.(10分)用适当的方法解方程(1)x2﹣4x+3=1;(2)(x+1)2﹣3(x+1)=1.26.(10分)化简:÷(-a-2),并代入一个你喜欢的值求值.

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

先分别表示出A、B、C、D的坐标,然后求出AC=k-1,BD=-,继而根据三角形的面积公式表示出S△AOC+S△ABD==3,解方程即可.【题目详解】∵点A,B在反比例函数(x>0)的图象上,点A、B的横坐标分别为1、2,∴A(1,1),B(2,),又∵点C、D在反比例函数(k>0)的图象上,AC//BD//y轴,∴C(1,),D(2,),∴AC=k-1,BD=-,∴S△AOC+S△ABD==3,∴k=5,故选A.【题目点拨】本题考查了反比例函数图象上点的坐标特征,三角形的面积,正确表示出△OAC与△ABD的面积是解题的关键.2、C【解题分析】

根据平行四边形的判定方法即可一一判断;【题目详解】A、由①②可以判定四边形ABCD是平行四边形;故本选项不符合题意;B、由①③可以判定四边形ABCD是平行四边形;故本选项不符合题意;C、由①④无法判定四边形ABCD是平行四边形,可能是等腰梯形,故本选项符合题意;D、由②④可以判定四边形ABCD是平行四边形;故本选项不符合题意;故选:C.【题目点拨】本题考查平行四边形的判定,解题的关键是熟练掌握平行四边形的判定方法,属于中考常考题型.3、B【解题分析】

由平行四边形的性质可得AB=CD,AB∥CD,∠BAD=∠BCD,由平行线的性质可得∠1=∠1.【题目详解】∵四边形ABCD是平行四边形∴AB=CD,AB∥CD,∠BAD=∠BCD∴∠1=∠1故选B.【题目点拨】本题考查了平行四边形的性质,熟练运用平行四边形的性质是本题的关键.4、C【解题分析】

由已知条件得出四边形ABCD是平行四边形,再由对角线互相垂直,即可得出四边形ABCD是菱形.【题目详解】如图所示:需要添加的条件是AC⊥BD;理由如下:

∵四边形ABCD的对角线互相平分,

∴四边形ABCD是平行四边形,

∵AC⊥BD,

∴平行四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形);

故选:C.【题目点拨】考查了平行四边形的判定方法、菱形的判定方法;熟练掌握平行四边形和菱形的判定方法,并能进行推理论证是解决问题的关键.5、D【解题分析】

由三角形的内心和外心性质得出选项A不正确;由平行四边形的性质得出选项B不正确;由三角形中位线定理得出选项C不正确;由平行四边形的判定得出选项D正确;即可得出结论.【题目详解】解:A.在三角形中,到三角形三边距离相等的点是三条边垂直平分线的交点;不正确;B.平行四边形是轴对称图形;不正确;C.三角形的中位线将三角形分成面积相等的两个部分;不正确;D.一组对边平行,一组对角相等的四边形是平行四边形;正确;故选:D.【题目点拨】本题考查了命题与定理、三角形的内心与外心、平行四边形的判定与性质以及三角形中位线定理;对各个命题进行正确判断是解题的关键.6、A【解题分析】

连接BD,BF可证△DBF为直角三角形,在通过直角三角形中斜边上的中线等于斜边的一半即可【题目详解】如图连接BD,BF;∵四边形ABCD和四边形BEFG都为正方形,AB=m,BE=n,∴∠DBF=90°,DB=,BF=,∴DF=,∵H为DF的中点,∴BH==,故选A【题目点拨】熟练掌握直角三角形中斜边上的中线等于斜边的一半和辅助线作法是解决本题的关键7、B【解题分析】A.9-4=3-2=1,则原计算错误;B.5×3=15,正确;C.98、D【解题分析】

根据图形的特点结合轴对称图形和中心对称图形的概念解答.【题目详解】解:A、既不是轴对称图形,也不是中心对称图形,故本项错误;B、既不是轴对称图形,也不是中心对称图形,故本项错误;C、是中心对称图形,不是轴对称图形,故本项错误;D、是轴对称图形,故本项正确;故选择:D.【题目点拨】此题考查了轴对称图形和中心对称图形的概念,熟记的定义是解题的关键.9、D【解题分析】

先提出公因式81,然后利用平方差公式进行因式分解即可得出答案.【题目详解】解:813-81=81×(812-1)=81×(81-1)×(81+1)=81×80×82,所以813-81不能被83整除.故选D.【题目点拨】本题考查了因式分解的应用,将原式正确的进行因式分解是解决此题的关键.10、D【解题分析】

先求出∠ACD=60°,继而可判断△ACD是等边三角形,从而可判断①是正确的;根据①的结论,可判断四边形ABCD是平行四边形,从而可判断②是正确的;再结合①的结论,可判断③正确;根据菱形的对角线互相垂直可得AC⊥BD,再根据平移后对应线段互相平行可得∠BDE=∠COD=90°,进而判断④正确.【题目详解】解:如图:∵△ABC,△DCE是等边三角形∴∠ACB=∠DCE=60°,AC=CD∴∠ACD=180°-∠ACB-∠DCE=60°∴△ACD是等边三角形∴AD=AC=BC,故①正确;由①可得AD=BC∵AB=CD∴四边形ABCD是平行四边形,∴BD、AC互相平分,故②正确;由①可得AD=AC=CE=DE故四边形ACED是菱形,即③正确∵四边形ABCD是平行四边形,BA=BC∴.四边形ABCD是菱形∴AC⊥BD,AC//DE∴∠BDE=∠COD=90°∴BD⊥DE,故④正确综上可得①②③④正确,共4个.故选:D【题目点拨】此题主要考查了菱形的判定与性质,以及平移的性质,关键是掌握菱形四边相等,对角线互相垂直.二、填空题(每小题3分,共24分)11、1【解题分析】

根据正方形的面积等于边长的平方,由正方形PQED的面积和正方形PRQF的面积分别表示出PR的平方及PQ的平方,又三角形PQR为直角三角形,根据勾股定理求出QR的平方,即为所求正方形的面积.【题目详解】解:∵正方形PQED的面积等于225,∴即PQ2=225,∵正方形PRGF的面积为289,∴PR2=289,又△PQR为直角三角形,根据勾股定理得:PR2=PQ2+QR2,∴QR2=PR2-PQ2=289-225=1,则正方形QMNR的面积为1.故答案为:1.【题目点拨】此题考查了勾股定理以及正方形的面积公式.勾股定理最大的贡献就是沟通“数”与“形”的关系,它的验证和利用都体现了数形结合的思想,即把图形的性质问题转化为数量关系的问题来解决.能否由实际的问题,联想到用勾股定理的知识来求解是本题的关键.12、【解题分析】

由于向量,所以.【题目详解】故答案为:【题目点拨】此题考查向量的基本运算,解题关键在于掌握运算法则即可.13、m=1【解题分析】

解不等式,表达出解集,根据数轴得出即可.【题目详解】解:不等式,解不等式①得:解不等式②得:,由数轴可知,,解得m=1,故答案为:m=1.【题目点拨】本题考查了根据不等式的解集求不等式中的参数问题,解题的关键是正确解出不等式组,根据解集表达出含参数的方程.14、1【解题分析】

根据三角形中位线定理求出DE,根据直角三角形的性质求出EF,结合图形计算即可.【题目详解】∵DE为△ABC的中位线,∴DE=BC=4(cm),∵∠AFC为直角,E为AC的中点,∴FE=AC=3(cm),∴DF=DE−FE=1(cm),故答案为:1cm.【题目点拨】此题考查三角形中位线定理,解题关键在于掌握其性质定义.15、1【解题分析】

根据二次根式的运算法则即可求出答案.【题目详解】∵a1,∴a﹣1,∴(a﹣1)1=3,a1=1(a+1),∴a1﹣1a=1,∴原式=.故答案为:1.【题目点拨】本题考查了二次根式,解题的关键是熟练运用二次根式的运算以及整式的运算,本题属于中等题型.16、x>1【解题分析】

根据二次根式有意义的条件可得>1,再根据分式分母≠1可得x>1.【题目详解】由题意得:x>1,故答案为:x>1【题目点拨】此题考查二次根式有意义的条件,掌握其定义是解题关键17、【解题分析】

根据根的判别式和已知得出(﹣3)2﹣4c=0,求出方程的解即可.【题目详解】∵一元二次方程x2﹣3x+c=0有两个相等的实数根,∴△=(﹣3)2﹣4c=0,解得:c=,故答案为.【题目点拨】本题考查根的判别式和解一元一次方程,能熟记根的判别式的内容是解此题的关键.18、2或.【解题分析】

分别从当Q运动到E和B之间与当Q运动到E和C之间去分析,根据平行四边形的性质,可得方程,继而可求得答案.【题目详解】解:E是BC的中点,BE=CE=BC=12=6,①当Q运动到E和C之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CE-CQ=6-2tt=6-2t,解得:t=2;②当Q运动到E和B之间,设运动时间为t,则AP=t,DP=AD-AP=4-t,CQ=2t,EQ=CQ-CE=2t-6,t=2t-6,解得:t=6(舍),③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,则AP=4-(t-4)=8-t,EQ=2t-6,8-t=2t-6,,当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.故答案为:2或.【题目点拨】本题主要考查平行四边形的性质及解一元一次方程.三、解答题(共66分)19、245【解题分析】试题分析:先根据菱形对角线互相垂直平分求得OA、OB的值,根据勾股定理求得AB的值,由菱形面积公式的两种求法列式可以求得高DH的长.试题解析:解:∵四边形ABCD是菱形,AC=8cm,BD=6cm,∴AC⊥BD,OA=12

AC=4cm,OB=12

BD=∴Rt△AOB中,AB=OA2+O∵DH⊥AB,∵菱形ABCD的面积S=

12AC•BD=AB•DH12×6×8=5DH∴DH=245点睛:本题考查了菱形的性质,熟练掌握菱形以下几个性质:①菱形的对角线互相垂直平分,②菱形面积=两条对角线积的一半,③菱形面积=底边×高;本题利用了面积法求菱形的高线的长.20、(1)详见解析;(2)详见解析.【解题分析】

(1)按照尺规作图的步骤作出图形即可;

(2)证明AC垂直平分EF,则根据对角线互相垂直平分的四边形为菱形得到四边形AECF是菱形.【题目详解】解:(1)如图,就是所求作的的垂直平分线,(2)证明:∵四边形ABCD为平行四边形,

∴AD∥BC,

∴∠AFE=∠CEF,

∵EF垂直平分AC,

∴EA=EC,EF⊥AC,

∴∠CEF=∠AEF,

∴∠AFE=∠AEF,

∴AE=AF,

∴AC垂直平分EF,

∴四边形AECF是菱形.【题目点拨】本题考查了作图-复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.也考查了菱形的判定.21、原式=﹣3x1+4,当x=2时,原式=﹣1.【解题分析】试题分析:原式利用完全平方公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.试题解析:原式=x1+4x+4﹣4x1﹣4x=﹣3x1+4,当x=2时,原式=﹣6+4=﹣1.考点:整式的化简求值.22、(I)点的坐标为;(II)四边形是平行四边形,理由见解析;(III)的最小值是.【解题分析】

(I)由,,可得,.分别表示出点A、D的坐标,根据,即可求出点A的坐标.(II)根据点A、C关于原点O对称,设点A的坐标为:,即可分别表示出B、C、D的坐标,然后可得出与互相平分可证明出四边形是平行四边形.(III)设与的距离为,由,,梯形的面积为,可求出h=7,根据,,可得,进而得出答案.【题目详解】(I)∵,,∴,,设点的坐标为,则点的坐标为,由得:,解得:,∴此时点的坐标为.(II)四边形是平行四边形,理由如下:设点的坐标为,∵点、关于原点对称,∴点的坐标为,∵∥∥轴,且点、在双曲线上,,∴点,点,∴点B与点D关于原点O对称,即,且、、三点共线.又点、C关于原点O对称,即,且、、三点共线.∴与互相平分.∴四边形是平行四边形.(III)设与的距离为,,,梯形的面积为,∴,即,解得:,设点的坐标为,则点,,,由,,可得:,则,,∴,解得:,∴,∵.∴.∴,即.又,,∴当取到等号.即,时,的最小值是.【题目点拨】本题主要考查了反比例函数的性质和图像,本题涉及知识点比较多,打好基础是解决本题的关键.23、(1);(2)无解【解题分析】

(1)最简公分母为x(x+6).方程两边都乘最简公分母,可以把分式方程转化为整式方程求解.结果需检验(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【题目详解】(1)解:方程两边同乘以得解这个方程得,检验:当时,所以原方程的解是(2)解:方程两边同乘以得解这个方程得,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论