版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届吉林省松原市宁江区第四中学数学八年级第二学期期末预测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.计算的结果是()A.4 B.± C.2 D.2.在一个不透明的口袋中装有红、黄、蓝三种颜色的球,如果口袋中有5个红球,且摸出红球的概率为,那么袋中总共球的个数为()A.15个 B.12个 C.8个 D.6个3.下列图形中,是中心对称图形但不是轴对称图形的是()A.等边三角形 B.平行四边形 C.一次函数图象 D.反比例函数图象4.下列图形中,不是轴对称图形的是()A.矩形 B.菱形 C.平行四边形 D.正方形5.如图,△ABC的周长为26,点D,E都在边BC上,∠ABC的平分线垂直于AE,垂足为Q,∠ACB的平分线垂直于AD,垂足为P.若BC=10,则PQ的长为()A. B. C.3 D.46.如图,平行四边形ABCD的对角线AC、BD相交于点O,AE平分∠BAD,分别交BC、BD于点E、P,连接OE,∠ADC=60°,AB=BC=1,则下列结论:①∠CAD=30°②BD=③S平行四边形ABCD=AB•AC④OE=AD⑤S△APO=,正确的个数是()A.2 B.3 C.4 D.57.已知平行四边形ABCD中,∠B=2∠A,则∠A=()A.36° B.60° C.45° D.80°8.如图甲是我国古代著名的“赵爽弦图”的示意图,它是由四个全等的直角三角形围成的,若AC=6,BC=5,将四个直角三角形中边长为6的直角边分别向外延长一倍,得到图乙所示的“数学风车”,则这个风车的外围周长是()A.52 B.42 C.76 D.729.如图,菱形ABCD的对角线AC、BD相交于点O,过点C作CE⊥AD于点E,连接OE,若OB=8,S菱形ABCD=96,则OE的长为()A.2 B.2 C.6 D.810.下列各组图形中不是位似图形的是()A. B.C. D.二、填空题(每小题3分,共24分)11.数据1,2,3,4,5的方差是______.12.菱形的周长为8,它的一个内角为60°,则菱形的较长的对角线长为__________.13.平行四边形ABCD的周长为20cm,对角线AC、BD相交于点O,若△BOC的周长比△AOB的周长大2cm,则CD=_____cm.14.“等边对等角”的逆命题是.15.如图,在△ABC中,∠A=α.∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2011BC与∠A2011CD的平分线相交于点A2012,得∠A2012,则∠A2012=_____.16.方程=2的解是_________17.计算:=______________18.27的立方根为.三、解答题(共66分)19.(10分)如图,四边形ABCD是菱形,AC=24,BD=10,DH⊥AB于点H,求菱形的面积及线段DH的长.20.(6分)正方形的对角线相交于点,点又是正方形的一个顶点,而且这两个正方形的边长相等.试证明:无论正方形绕点怎样转动,两个正方形重叠部分的面积,总等于一个正方形面积的.21.(6分)如图所示,图1、图2分别是的网格,网格中的每个小正方形的边长均为1.请按下列要求分别画出相应的图形,且所画图形的每个顶点均在所给小正方形的顶点上.(1)在图1中画出一个周长为的菱形(非正方形);(2)在图2中画出一个面积为9的平行四边形,且满足,请直接写出平行四边形的周长.22.(8分)再读教材:宽与长的比是(约为0.618)的矩形叫做黄金矩形,黄金矩形给我们以协调,匀称的美感.世界各国许多著名的建筑.为取得最佳的视觉效果,都采用了黄金矩形的设计,下面我们用宽为2的矩形纸片折叠黄金矩形.(提示;MN=2)第一步,在矩形纸片一端.利用图①的方法折出一个正方形,然后把纸片展平.第二步,如图②.把这个正方形折成两个相等的矩形,再把纸片展平.第三步,折出内侧矩形的对角线AB,并把AB折到图③中所示的AD处,第四步,展平纸片,按照所得的点D折出DE,使DE⊥ND,则图④中就会出现黄金矩形,问题解决:(1)图③中AB=________(保留根号);(2)如图③,判断四边形BADQ的形状,并说明理由;(3)请写出图④中所有的黄金矩形,并选择其中一个说明理由.(4)结合图④.请在矩形BCDE中添加一条线段,设计一个新的黄金矩形,用字母表示出来,并写出它的长和宽.23.(8分)如图,一根竹子高0.9丈,折断后竹子顶端落在离竹子底端3尺处,折断处离地面的高度是多少尺?(这是我国古代数学著作《九章算术》中的一个问题,其中的丈、尺是长度单位,1丈=10尺).24.(8分)一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为x(小时),两车之间的距离为(千米),图中的折线表示与的函数关系.信息读取:(1)甲、乙两地之间的距离为__________千米;(2)请解释图中点的实际意义;图像理解:(3)求慢车和快车的速度;(4)求线段所示的与之间函数关系式.25.(10分)如图,矩形中,,将矩形绕点旋转得到矩形,使点的对应点落在上,交于点,在上取点,使.(1)求证:;(2)求的度数;(3)若,求的长.26.(10分)(1)某学校“智慧方园”数学社团遇到这样一个题目:如图1,在△ABC中,点O在线段BC上,∠BAO=30°,∠OAC=75°,AO=,BO:CO=1:3,求AB的长.经过社团成员讨论发现,过点B作BD∥AC,交AO的延长线于点D,通过构造△ABD就可以解决问题(如图2).请回答:∠ADB=°,AB=.(2)请参考以上解决思路,解决问题:如图3,在四边形ABCD中,对角线AC与BD相交于点O,AC⊥AD,AO=,∠ABC=∠ACB=75°,BO:OD=1:3,求DC的长.
参考答案一、选择题(每小题3分,共30分)1、C【解题分析】
根据二次根式的运算法则即可求出答案.【题目详解】解:原式==2,故选:C.【题目点拨】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.2、A【解题分析】
根据红球的概率公式列出方程求解即可.【题目详解】解:根据题意设袋中共有球m个,则
所以m=1.
故袋中有1个球.
故选:A.【题目点拨】本题考查了随机事件概率的求法,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、B【解题分析】
根据中心对称和轴对称图形的定义判定即可.【题目详解】解:A.等边三角形是轴对称图形,不是中心对称图形;B.平行四边形既不是轴对称图形但是中心对称图形;C.一次函数图象是轴对称图形也是中心对称图形;D.反比例函数图象是轴对称图形也是中心对称图形;故答案为B.【题目点拨】本题考査了中心对称图形与轴对称图形的概念,轴对称图形的关键是明确轴对称图形和中心对称图形的区别和联系.4、C【解题分析】
根据轴对称图形的定义即可判断.【题目详解】A.
矩形是轴对称图形,不符合题意;
B.
菱形是轴对称图形,不符合题意;
C.
平行四边形不是轴对称图形,符合题意;
D.
正方形是轴对称图形,不符合题意;
故选:C.【题目点拨】本题考查轴对称图形的定义,解题的关键是掌握轴对称图形的定义.5、C【解题分析】首先判断△BAE、△CAD是等腰三角形,从而得出BA=BE,CA=CD,由△ABC的周长为26,及BC=10,可得DE=6,利用中位线定理可求出PQ.6、D【解题分析】
①先根据角平分线和平行得:∠BAE=∠BEA,则AB=BE=1,由有一个角是60度的等腰三角形是等边三角形得:△ABE是等边三角形,由外角的性质和等腰三角形的性质得:∠ACE=30°,最后由平行线的性质可作判断;②先根据三角形中位线定理得:OE=AB=,OE∥AB,根据勾股定理计算OC=和OD的长,可得BD的长;③因为∠BAC=90°,根据平行四边形的面积公式可作判断;④根据三角形中位线定理可作判断;⑤根据同高三角形面积的比等于对应底边的比可得:S△AOE=S△EOC=OE•OC=,,代入可得结论.【题目详解】①∵AE平分∠BAD,∴∠BAE=∠DAE,∵四边形ABCD是平行四边形,∴AD∥BC,∠ABC=∠ADC=60°,∴∠DAE=∠BEA,∴∠BAE=∠BEA,∴AB=BE=1,∴△ABE是等边三角形,∴AE=BE=1,∵BC=2,∴EC=1,∴AE=EC,∴∠EAC=∠ACE,∵∠AEB=∠EAC+∠ACE=60°,∴∠ACE=30°,∵AD∥BC,∴∠CAD=∠ACE=30°,故①正确;②∵BE=EC,OA=OC,∴OE=AB=,OE∥AB,∴∠EOC=∠BAC=60°+30°=90°,Rt△EOC中,OC=,∵四边形ABCD是平行四边形,∴∠BCD=∠BAD=120°,∴∠ACB=30°,∴∠ACD=90°,Rt△OCD中,OD=,∴BD=2OD=,故②正确;③由②知:∠BAC=90°,∴S▱ABCD=AB•AC,故③正确;④由②知:OE是△ABC的中位线,又AB=BC,BC=AD,∴OE=AB=AD,故④正确;⑤∵四边形ABCD是平行四边形,∴OA=OC=,∴S△AOE=S△EOC=OE•OC=××,∵OE∥AB,∴,∴,∴S△AOP=S△AOE==,故⑤正确;本题正确的有:①②③④⑤,5个,故选D.【题目点拨】本题考查了平行四边形的性质、等腰三角形的性质、直角三角形30度角的性质、三角形面积和平行四边形面积的计算;熟练掌握平行四边形的性质,证明△ABE是等边三角形是解决问题的关键,并熟练掌握同高三角形面积的关系.7、B【解题分析】
根据平行四边形的性质得出BC∥AD,推出∠A+∠B=180°,求出∠A的度数即可.【题目详解】∵四边形ABCD是平行四边形,∴BC∥AD,∴∠A+∠B=180°.∵∠B=2∠A,∴∠A=60°.故选B.【题目点拨】本题考查了平行四边形的性质,平行线的性质的应用,关键是平行四边形的邻角互补.8、C【解题分析】解:依题意得,设“数学风车”中的四个直角三角形的斜边长为x,则x2=122+52=169,解得:x=1.故“数学风车”的周长是:(1+6)×4=2.故选C.9、C【解题分析】
由菱形的性质得出BD=16,由菱形的面积得出AC=12,再由直角三角形斜边上的中线性质即可得出结果.【题目详解】∵四边形ABCD是菱形,∴OA=OC,OB=OD=BD,BD⊥AC,∴BD=16,∵S菱形ABCD═AC×BD=96,∴AC=12,∵CE⊥AD,∴∠AEC=90°,∴OE=AC=6,故选C.【题目点拨】此题主要考查了菱形的性质、直角三角形斜边上的中线性质;熟练掌握菱形的性质是解题的关键.10、D【解题分析】
根据位似图形的定义解答即可,注意排除法在解选择题中的应用.【题目详解】根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的位似中心是圆心;D不是位似图形.故选D.【题目点拨】本题考查了位似图形的定义.注意:①两个图形必须是相似形;②对应点的连线都经过同一点;③对应边平行.二、填空题(每小题3分,共24分)11、1【解题分析】
根据方差的公式计算.方差.【题目详解】解:数据1,1,3,4,5的平均数为,故其方差.故答案为:1.【题目点拨】本题考查方差的计算.一般地设个数据,,,的平均数为,则方差,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.12、【解题分析】
由菱形的性质可得AB=2,AC⊥BD,BD=2OB,由直角三角形的性质可得AO=1,由勾股定理可求BO的长,即可得BD的长.【题目详解】解:如图所示:∵菱形ABCD的周长为8,∴AB=2,AC⊥BD,BD=2OB,∵∠ABC=60°,∴∠ABO=∠ABC=30°,∴AO=1,∴BO=,∴BD=,故答案为:.【题目点拨】本题考查了菱形的性质,直角三角形30°角所对的直角边等于斜边的一半的性质,勾股定理,熟记性质是解题的关键,作出图形更形象直观.13、1.【解题分析】
根据平行四边形的性质可知,平行四边形的对角线互相平分,由于△BOC的周长比△AOB的周长大2cm,则BC比AB长7cm,所以根据周长的值可以求出AB,进而求出CD的长.【题目详解】解:∵平行四边形的周长为20cm,∴AB+BC=10cm;又△BOC的周长比△AOB的周长大2cm,∴BC﹣AB=2cm,解得:AB=1cm,BC=6cm.∵AB=CD,∴CD=1cm故答案为1.14、等角对等边【解题分析】试题分析:交换命题的题设和结论即可得到该命题的逆命题;解:“等边对等角”的逆命题是等角对等边;故答案为等角对等边.【点评】本题考查了命题与定理的知识,解题的关键是分清原命题的题设和结论.15、【解题分析】
利用角平分线的数量关系和外角的性质先得到∠A1与∠A的关系,同样的方法再得到∠A2和∠A1的关系,从而观察出其中的规律,得出结论.【题目详解】平分,.平分,..同理可得:;......【题目点拨】本题考察了三角形内角和外角平分线的综合应用及列代数式表示规律.16、【解题分析】【分析】方程两边平方可得到整式方程,再解之可得.【题目详解】方程两边平方可得x2-3x=4,即x2-3x-4=0,解得x1=-1,x2=4故答案为:【题目点拨】本题考核知识点:二次根式,无理方程.解题关键点:化无理方程为整式方程.17、2【解题分析】
先将二次根式化为最简,然后合并同类二次根式即可.【题目详解】解:原式=.故答案为:2.【题目点拨】本题考查了二次根式的加减运算,掌握二次根式的化简及同类二次根式的合并是关键.18、1【解题分析】找到立方等于27的数即可.解:∵11=27,∴27的立方根是1,故答案为1.考查了求一个数的立方根,用到的知识点为:开方与乘方互为逆运算三、解答题(共66分)19、【解题分析】
先根据菱形的面积等于对角线乘积的一半求出菱形的面积,然后再根据勾股定理求出菱形的边长,利用菱形面积的以一求解方法,边长乘高即可求得DH的长.【题目详解】在菱形ABCD中,AC⊥BD,∵AC=24,BD=10,∴AO=AC=12,BO=BD=5,S菱形ABCD=,∴AB==13,∵S菱形ABCD=AB·DH=120,∴DH=.【题目点拨】本题考查了菱形的性质、勾股定理、菱形的面积等,注意菱形的面积等于对角线乘积的一半,也等于底乘高.20、见解析.【解题分析】
分两种情况讨论:(1)当正方形边与正方形的对角线重合时;(2)当转到一般位置时,由题求证,故两个正方形重叠部分的面积等于三角形的面积,得出结论.【题目详解】(1)当正方形绕点转动到其边,分别于正方形的两条对角线重合这一特殊位置时,显然;(2)当正方形绕点转动到如图位置时,∵四边形为正方形,∴,,,即又∵四边形为正方形,∴,即,∴,在和中,,∴,∵,又,∴.【题目点拨】此题考查正方形的性质,三角形全等的判定与性质,三角形的面积等知识点.21、(1)见解析;(2)见解析,周长为:+2.【解题分析】
(1)利用数形结合的思想画出边长为
菱形即可.
(2)利用数形结合的思想解决问题即可.【题目详解】解:(1)∵菱形周长为,∴菱形的边长为,如图1所示,菱形ABCD即为所求.(2)如图2中,平行四边形MNPQ即为所求.∵如图所示,∠MNP=45°,∠MPN=90°,∴NP=MP,又∵面积为9,∴NP∙MP=9,∴NP=MP=3,∴MN=,∴周长为:+2.【题目点拨】本题考查菱形的判定和性质,平行四边形的判定和性质,数形结合的思想等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.22、(1);(2)见解析;(3)见解析;(4)见解析.【解题分析】分析:(1)由勾股定理计算即可;(2)根据菱形的判定方法即可判断;(3)根据黄金矩形的定义即可判断;(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.详解:(1)如图3中.在Rt△ABC中,AB===.故答案为.(2)结论:四边形BADQ是菱形.理由如下:如图③中,∵四边形ACBF是矩形,∴BQ∥AD.∵AB∥DQ,∴四边形ABQD是平行四边形,由翻折可知:AB=AD,∴四边形ABQD是菱形.(3)如图④中,黄金矩形有矩形BCDE,矩形MNDE.∵AD=.AN=AC=1,CD=AD﹣AC=﹣1.∵BC=2,∴=,∴矩形BCDE是黄金矩形.∵==,∴矩形MNDE是黄金矩形.(4)如图④﹣1中,在矩形BCDE上添加线段GH,使得四边形GCDH为正方形,此时四边形BGHE为所求是黄金矩形.长GH=﹣1,宽HE=3﹣.点睛:本题考查了几何变换综合题、黄金矩形的定义、勾股定理、翻折变换等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考创新题目.23、4尺【解题分析】
杆子折断后刚好构成一直角三角形,设杆子折断处离地面的高度是x尺,则斜边为(9-x)尺.利用勾股定理解题即可.【题目详解】0.9丈=9尺设杆子折断处离地面尺,则斜边为(9-)尺,根据勾股定理得:,解得:=4,答:折断处离地面的高度是4尺.【题目点拨】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.24、(1)900;(2)当两车出发4小时时相遇;(3)慢车的速度是75千米/时,快车的速度是150千米/时;(4)y=225x﹣900(4≤x≤6).【解题分析】
(1)根据已知条件和函数图象可以直接写出甲、乙两地之间的距离;(2)根据题意可以得到点B表示的实际意义;(3)根据图象和题意可以分别求出慢车和快车的速度;(4)根据题意可以求得点C的坐标,由图象可以得到点B的坐标,从而可以得到线段BC所表示的y与x之间的函数关系式,以及自变量x的取值范围.【题目详解】(1)由图象可得:甲、乙两地之间的距离为900千米.故答案为900;(2)图中点B的实际意义时当两车出发4小时时相遇;(3)由题意可得:慢车的速度为:900÷12=75,快车的速度为:(900﹣75×4)÷4=150,即慢车的速度是75千米/时,快车的速度是150千米/时;(4)由题可得:点C是快车刚到达乙地,∴点C的横坐标是:900÷150=6,纵坐标是:900﹣75×6=450,即点C的坐标为(6,450),设线段BC对应的函数解析式为y=kx+b.∵点B(4,0),点C(6,450),∴,得:,即线段BC所表示的y与x之间的函数关系式是y=225x﹣900(4≤x≤6).【题目点拨】本题考查了一次函数的应用,解答此类问题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答,注意最后要写出自变量x的取值范围.25、(1)见解析;(2)15°;(3)2+2.【解题分析】
(1)在直角三角形ABC中,由AC=2AB,得到∠ACB=30°,再由折叠的性质得到一对角相等,利用等角对等边即可得证;
(2)由(1)得到△ABB′为等边三角形,利用矩形的性质及等边三角形的内角为60°,即可求出所求角度数;
(3)连接AF,过A作AM⊥BF,可得△AB′F是等腰直角三角形,△AB′B为等边三角形,分别利用三角函数定义求出MF与AM,根据AM=BM,即BM+MF=BF即可求出.【题目详解】(1)证明:∵在Rt△ABC中,AC=2AB,
∴∠ACB=∠AC′B′=30°,∠BAC=60°,
由旋转可得:AB′=AB,∠B′AC′=∠BAC=60°,
∴∠EAC′=∠AC′B′=30°,
∴AE=C′E;
(2)解:由(1)得到△ABB′为等边三角形,
∴∠AB′B=60°,即∠BB'F=∠AB'B+∠AB'F=150°,
∵BB'=B'F,
∴∠FBB′=∠B'FB=15°;
(3)解:连接AF,过A作AM⊥B
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度文化产业加盟合作合同3篇
- 2024夫妻双方债务清偿协议3篇
- 2024年度内墙腻子工程环保材料认证与质量保证合同3篇
- 学校课程设计中期计划
- 小班观雨课程设计
- 2024年工程资料管理承包协议3篇
- 2024年外汇借款业务指南3篇
- 幼儿园中班礼物课程设计
- 2024年中国硬质冰淇淋机市场调查研究报告
- 2024年中国电话机电路板市场调查研究报告
- 中华人民共和国能源法
- 劳动教育智慧树知到期末考试答案2024年
- 人才计划答辩常见问题
- 刑事案件模拟法庭剧本完整版五篇
- 职业暴露针刺伤应急预案演练脚本-
- 最新青岛版小学六年级数学上册期末试卷及答案
- 建筑工程常用法语词汇汇编课件
- 在全县2019年固定资产投资推进会上的讲话
- 长江有色金属历史价格
- 学而思寒假七年级尖子班讲义第5讲二元一次方程组进阶
- 人教版八年级上册期末语篇填空专题(含答案)
评论
0/150
提交评论