2024届山东省临沂市兰陵县数学八下期末统考试题含解析_第1页
2024届山东省临沂市兰陵县数学八下期末统考试题含解析_第2页
2024届山东省临沂市兰陵县数学八下期末统考试题含解析_第3页
2024届山东省临沂市兰陵县数学八下期末统考试题含解析_第4页
2024届山东省临沂市兰陵县数学八下期末统考试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省临沂市兰陵县数学八下期末统考试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下表记录了甲、乙、丙、丁四名射击运动员最近几次选拔赛成绩的平均数和方差:根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择()A.甲 B.乙 C.丙 D.丁2.一元二次方程根的情况是A.有两个相等的实数根 B.有两个不相等的实数根C.没有实数根 D.不能确定3.下列说法正确的是()A.对角线相等且互相垂直的四边形是菱形B.对角线互相垂直平分的四边形是正方形C.对角线互相垂直的四边形是平行四边形D.对角线相等且互相平分的四边形是矩形4.如果一组数据1、2、x、5、6的众数是6,则这组数据的中位数是()A.1 B.2 C.5 D.65.直线:为常数的图象如图,化简:A.3 B. C. D.56.如图,在△ABC中,∠C=90°,AC=8,BC=6,点P为斜边AB上一动点,过点P作PE⊥AC于E,PF⊥BC于点F,连结EF,则线段EF的最小值为()A.24B.C.D.57.甲、乙两名同学在初二下学期数学6章书的单元测试中,平均成绩都是86分,方差分别是,,则成绩比较稳定的是()A.甲 B.乙 C.甲和乙一样 D.无法确定8.如图,在矩形ABCD中,AB=6,BC=8,若将矩形折叠,使B点与D点重合,则折痕EF的长为()A. B. C.5 D.69.某校将举办一场“中国汉字听写大赛”,要求每班推选一名同学参加比赛,为此,初二(1)班组织了五轮班级选拔赛,在这五轮选拔赛中,甲、乙两位同学的平均分都是96分,甲的成绩的方差是0.3,乙的成绩的方差是0.4,根据以上数据,下列说法正确的是()A.甲的成绩比乙的成绩稳定B.乙的成绩比甲的成绩稳定C.甲、乙两人的成绩一样稳定D.无法确定甲、乙的成绩谁更稳定10.下列各式从左到右的变形中,是分解因式的是()A. B.C. D.二、填空题(每小题3分,共24分)11.正方形按如图所示的方式放置,点.和.分别在直线和x轴上,已知点,则Bn的坐标是____________12.分式方程的解是_____.13.要使有意义,则x的取值范围是_________.14.在平面直角坐标系中,将点P(﹣2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P'的坐标是_____.15.已知:线段AB,BC.求作:平行四边形ABCD.以下是甲、乙两同学的作业.甲:①以点C为圆心,AB长为半径作弧;②以点A为圆心,BC长为半径作弧;③两弧在BC上方交于点D,连接AD,CD.四边形ABCD即为所求平行四边形.(如图1)乙:①连接AC,作线段AC的垂直平分线,交AC于点M;②连接BM并延长,在延长线上取一点D,使MD=MB,连接AD,CD.四边形ABCD即为所求平行四边形.(如图2)老师说甲、乙同学的作图都正确,你更喜欢______的作法,他的作图依据是:______.16.如图,A、B两点被池塘隔开,在AB外选一点C,连接AC、BC,取AC、BC的中点D、E,量出DE=20米,则AB的长为___________米.17.如图,等腰直角三角形ABC的底边长为6,AB⊥BC;等腰直角三角形CDE的腰长为2,CD⊥ED;连接AE,F为AE中点,连接FB,G为FB上一动点,则GA的最小值为____.18.如图所示,在ΔABC中,点D是BC的中点,点E,F分别在线段AD及其延长线上,且DE=DF,给出下列条件:①BE⊥EC;②BF∥EC;③AB=AC.从中选择一个条件使四边形BECF是菱形,你认为这个条件是____(只填写序号).

三、解答题(共66分)19.(10分)如图,在中,,是的中点,是的中点,过点作交的延长线于点,连接.(1)写出四边形的形状,并证明:(2)若四边形的面积为12,,求.20.(6分)随着生活水平的提高,人们对饮水质量的需求越来越高,我市某公司根据市场需求准备销售A、B两种型号的净水器,每台A型净水器比每台B型净水器进价多300元,用48000元购进A型净水器与用36000元购进B型净水器的数量相等.(1)求每台A型、B型净水器的进价各是多少元?(2)该公司计划购进A、B两种型号的净水器共400台进行销售,其中A型的台数不超过B型的台数,A型净水器每台售价1500元,B型净水器每台售价1100元,怎样安排进货才能使售完这400台净水器所获利润最大?最大利润是多少元?21.(6分)在菱形ABCD中,∠ABC=60°,E是对角线AC上任意一点,F是线段BC延长线上一点,且CF=AE,连接BE、EF.(1)如图1,当E是线段AC的中点时,求证:BE=EF.(2)如图2,当点E不是线段AC的中点,其它条件不变时,请你判断(1)中的结论是否成立?若成立,请证明;若不成立,说明理由.22.(8分)如图,在△ABC中,∠C=90°,AC=BC,AD是∠BAC的平分线,DE⊥AB于E,(1)若CD=1cm,求AC的长;(2)求证:AB=AC+CD.23.(8分)如图所示的是小聪课后自主学习的一道题,参照小聪的解题思路,回答下列问题:若,求m、n的值..小聪的解答:∵,∴,∴,而,∴,∴.(1),求a和b的值.(2)已知的三边长a、b、c满足,关于此三角形的形状有以下命题:①它是等边三角形;②它是等腰三角形;③它是直角三角形.其中是真命题的有_____.(填序号)24.(8分)为了预防流感,某学校在休息日用药熏消毒法对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y(mg)与时间t(h)成正比;药物释放完毕后,y与t之间的函数解析式为y=at(1)写出从释放药物开始,y与t之间的两个函数解析式及相应的自变量取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25mg以下时,学生方可进入教室,那么药物释放开始,至少需要经过多少小时,学生才能进入教室?25.(10分)在平面直角坐标系中的位置如图所示,其中每个小正方形的边长为个单位长度,按要求作图:①画出关于原点的中心对称图形;②画出将绕点逆时针旋转得到③请在网格内过点画一条直线将平分成两个面积相等的部分.26.(10分)如图,为等边三角形,,、相交于点,于点,,.(1)求证:;(2)求的长.

参考答案一、选择题(每小题3分,共30分)1、D【解题分析】试题分析:丁的平均数最大,方差最小,成绩最稳当,所以选丁运动员参加比赛.故选D.考点:方差;加权平均数.2、C【解题分析】

由△=b2-4ac的情况进行分析.【题目详解】因为,△=b2-4ac=(-3)2-4×1×3=-3<0,所以,方程没有实数根.故选C【题目点拨】本题考核知识点:根判别式.解题关键点:熟记一元二次方程根判别式.3、D【解题分析】

分别根据菱形、正方形、平行四边形和矩形的判定逐项判断即可.【题目详解】对角线相等且互相垂直的四边形不一定是平行四边形,更不一定是菱形,故A不正确;对角线互相垂直平分的四边形为菱形,但不一定是正方形,故B不正确;对角线互相垂直的四边形,其对角线不一定会平分,故不一定是平行四边形,故C不正确;对角线互相平分说明四边形为平行四边形,又对角线相等,可知其为矩形,故D正确;故选:D.【题目点拨】考查平行四边形及特殊平行四边形的判定,掌握平行四边形及特殊平行四边形的对角线所满足的条件是解题的关键.4、C【解题分析】分析:根据众数的定义先求出x的值,再把数据按从小到大的顺序排列,找出最中间的数,即可得出答案.详解:∵数据1,2,x,5,6的众数为6,∴x=6,把这些数从小到大排列为:1,2,5,6,6,最中间的数是5,则这组数据的中位数为5;故选C.点睛:本题考查了中位数的知识点,将一组数据按照从小到大的顺序排列,如果数据的个数为奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数为偶数,则中间两个数据的平均数就是这组数据的中位数.5、C【解题分析】

先从一次函数的图象判断出的正负,然后再化简原代数式.【题目详解】由直线为常数的图象可得:,所以,故选:C.【题目点拨】本题主要考查一次函数的图象,关键是根据二次根式的性质及其化简,绝对值的化简解答.6、C【解题分析】

连接PC,当CP⊥AB时,PC最小,利用三角形面积解答即可.【题目详解】解:连接PC,∵PE⊥AC,PF⊥BC,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP是矩形,∴EF=PC,∴当PC最小时,EF也最小,即当CP⊥AB时,PC最小,∵AC=1,BC=6,∴AB=10,∴PC的最小值为:=4.1.∴线段EF长的最小值为4.1.故选C.【题目点拨】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.7、A【解题分析】

方差决定一组数据的稳定性,方差大的稳定性差,方差小的稳定好.【题目详解】∵,∴∴甲同学的成绩比较稳定故选:A.【题目点拨】本题考查了方差与稳定性的关系,熟知方差小,稳定性好是解题的关键.8、A【解题分析】

试题分析:EF与BD相交于点H,∵将矩形沿EF折叠,B,D重合,∴∠DHE=∠A=90°,又∵∠EDH=∠BDA,∴△EDH∽△BDA,∵AD=BC=8,CD=AB=6,∴BD=10,∴DH=5,∴EH=,∴EF=.故选A.考点:三角形相似.【题目详解】请在此输入详解!9、A【解题分析】因为,,所以甲的成绩比乙的成绩稳定.10、B【解题分析】

A、是整式乘法,不符合题意;B、是因式分解,符合题意;C、右边不是整式的积的形式,不符合题意;D、右边不是整式的积的形式,不符合题意,故选B.二、填空题(每小题3分,共24分)11、(2n-1,2n-1)【解题分析】

首先由B1的坐标为(1,1),点B2的坐标为(3,2),可得正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,即可求得A1的坐标是(0,1),A2的坐标是:(1,2),然后由待定系数法求得直线A1A2的解析式,由解析式即可求得点A3的坐标,继而可得点B3的坐标,观察可得规律Bn的坐标是(2n-1,2n-1).【题目详解】解:∵B1的坐标为(1,1),点B2的坐标为(3,2),∴正方形A1B1C1O1边长为1,正方形A2B2C2C1边长为2,∴A1的坐标是(0,1),A2的坐标是:(1,2),∴,解得:,∴直线A1A2的解析式是:y=x+1.∵点B2的坐标为(3,2),∴点A3的坐标为(3,4),∴点B3的坐标为(7,4),∴Bn的横坐标是:2n-1,纵坐标是:2n-1.∴Bn的坐标是(2n-1,2n-1).故答案为:(2n-1,2n-1).【题目点拨】此题考查了待定系数法求一次函数的解析式以及正方形的性质.此题难度适中,属于规律型题目,注意掌握数形结合思想与方程思想的应用.12、【解题分析】

两边都乘以x(x-1),化为整式方程求解,然后检验.【题目详解】原式通分得:去分母得:去括号解得,经检验,为原分式方程的解故答案为【题目点拨】本题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.13、.【解题分析】

根据二次根式有意义的条件即可解答.【题目详解】∵有意义,∴2x+5≥0,解得,.故答案为:.【题目点拨】本题考查了二次根式有意义的条件,熟知二次根式有意义被开方数为非负数是解决问题的关键.14、(1,5)【解题分析】

根据向右平移横坐标加,向上平移纵坐标加求解即可.【题目详解】解:∵点P(-2,1)向右平移3个单位长度,再向上平移4个单位长度得到点P',

∴点P′的横坐标为-2+3=1,

纵坐标为1+4=5,

∴点P′的坐标是(1,5).

故答案为(1,5).【题目点拨】本题考查了坐标与图形变化-平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.15、乙对角线互相平分的四边形是平行四边形【解题分析】

根据平行四边形的判定方法,即可解决问题.【题目详解】根据平行四边形的判定方法,我更喜欢乙的作法,他的作图依据是:对角线互相平分的四边形是平行四边形.故答案为:乙;对角线互相平分的四边形是平行四边形.【题目点拨】本题主要考查尺规作图-复杂作图,平行四边形的判定定理,掌握尺规作线段的中垂线以及平行四边形的判定定理,是解题的关键.16、40【解题分析】【分析】推出DE是三角形ABC的中位线,即可求AB.【题目详解】因为,D、E是AC、BC的中点,所以,DE是三角形ABC的中位线,所以,AB=2DE=40米故答案为:40【题目点拨】本题考核知识点:三角形中位线.解题关键点:理解三角形中位线的性质.17、3.【解题分析】

运用等腰直角过三角形角的性质,逐步推导出AC⊥EC,当AG⊥BF时AG最小,最后运用平行线等分线段定理,即可求解.【题目详解】解:∵等腰直角三角形ABC,等腰直角三角形CDE∴∠ECD=45°,∠ACB=45°即AC⊥EC,且CE∥BF当AG⊥BF,时AG最小,所以由∵AF=AE∴AG=CG=AC=3故答案为3【题目点拨】本题考查了等腰直角三角形三角形的性质和平行线等分线段定理,其中灵活应用三角形中位线定理是解答本题的关键.18、③【解题分析】分析:根据点D是BC的中点,点E、F分别是线段AD及其延长线上,且DE=DF,即可证明四边形BECF是平行四边形,然后根据菱形的判定定理即可作出判断.详解:∵BD=CD,DE=DF,∴四边形BECF是平行四边形,①BE⊥EC时,四边形BECF是矩形,不一定是菱形;②AB=AC时,∵D是BC的中点,∴AF是BC的中垂线,∴BE=CE,∴平行四边形BECF是菱形.③四边形BECF是平行四边形,则BF∥EC一定成立,故不一定是菱形;故答案是:②.点睛:本题考查了菱形的判定方法,菱形的判别常用三种方法:①定义;②四边相等;③对角线互相垂直平分.三、解答题(共66分)19、(1)详见解析;(2)【解题分析】

(1)由“AAS”可证△AEF≌△DEC,可得AF=CD,由直角三角形的性质可得AD=BD=CD,由菱形的判定是可证ADBF是菱形.

(2)由题意可得S△ABC=S四边形ADBF=12,可得AC的长,由勾股定理可求BC的长.【题目详解】解:解:(1)四边形ADBF是菱形,

理由如下:∵E是AD的中点,

∴AE=DE,

∵AF∥BC

∴∠AFE=∠DCE,且∠AEF=∠CED,AE=DE

∴△AEF≌△DEC(AAS)

∴AF=CD,

∵点D是BC的中点

∴BD=DC

∴AF=BD,且AF∥CD

∴四边形ADBF是平行四边形,

∵∠BAC=90°,D是BC的中点,

∴AD=BD,

∴平行四边形ADBF是菱形

(2)∵四边形ADBF的面积为12,

∴S△ABD=6

∵D是BC的中点

∴S△ABC=12=×AB×AC

∴12=×4×AC

∴AC=6,

∴BC=.【题目点拨】本题考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.20、(1)每台A型净水器的进价为2元,每台B型净水器的进价为1元;(2)购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.【解题分析】

(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,根据数量=总价÷单价结合用48000元购进A型净水器与用36000元购进B型净水器的数量相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设最大利润是W元,由总利润=单台利润×进货数量,即可得出W关于x的函数关系式,由A型的台数不超过B型的台数,可得出关于x的一元一次不等式,解之即可得出x的取值范围,再利用一次函数的性质即可解决最值问题.【题目详解】(1)设每台B型净水器的进价为x元,则每台A型净水器的进价为(x+300)元,依题意,得:解得:x=1.经检验,x=1是原方程的解,且符合题意,∴x+300=2.答:每台A型净水器的进价为2元,每台B型净水器的进价为1元.(2)设最大利润是W元.∵购进x台A型净水器,∴购进(400﹣x)台B型净水器,依题意,得:W=(1500﹣2)x+(1100﹣1)(400﹣x)=100x+3.∵A型的台数不超过B型的台数,∴x≤400﹣x,解得:x≤4.∵100>0,∴W随x值的增大而增大,∴当x=4时,W取得最大值,最大值为100000元.答:购进4台A型净水器,4台B型净水器,可使售完这400台净水器所获利润最大,最大利润是100000元.【题目点拨】本题考查了分式方程的应用、一元一次不等式的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量之间的关系,找出W关于x的函数关系式.21、(1)详见解析;(2)结论成立,理由详见解析.【解题分析】

(1)由四边形ABCD是菱形,∠ABC=60°,可知△ABC是等边三角形,因为E是线段AC的中点,所以∠CBE=∠ABE=30°,AE=CE,由AE=CF得CE=CF可知∠CEF=∠F由∠ACF=120°可知∠F=30°∴∠F=∠CBE=30°。即可证明BE=EF.(2)过点E作EG∥BC交AB于点G,可得∠AGE=∠ABC=60°,因为∠BAC=60°,所以△AGE是等边三角形,可知AG=AE=GE,∠AGE=60°,可知BG=CE,因为CF=AE,所以GE=CF,进而可证明△BGE≌△ECF,即可证明BE=EF.【题目详解】(1)∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴∠BCA=60°,∵E是线段AC的中点,∴∠CBE=∠ABE=30°,AE=CE,∵CF=AE,∴CE=CF,∵∠ECF=120°,∴∠F=∠CEF=30°∴∠CBE=∠F=30°,∴BE=EF;(2)结论成立;理由如下:过点E作EG∥BC交AB于点G,如图2所示:∵四边形ABCD为菱形,∴AB=BC,∠BCD=120°,AB∥CD,∴∠ACD=60°,∠DCF=∠ABC=60°,∴∠ECF=120°,又∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠ACB=60°,又∵EG∥BC,∴∠AGE=∠ABC=60°,又∵∠BAC=60°,∴△AGE是等边三角形,∴AG=AE=GE,∠AGE=60°,∴BG=CE,,又∵CF=AE,∴GE=CF,∵在△BGE和△CEF中,BG=CE,∠BGE=∠ECF,GE=CF,∴△BGE≌△ECF(SAS),∴BE=EF.【题目点拨】本题考查菱形的性质,等边三角形,全等三角形的性质,熟练掌握相关知识是解题关键.22、(1);(2)证明见解析.【解题分析】

(1)根据角平分线上的点到两边的距离相等可得DE=CD=1cm,再判断出△BDE为等腰直角三角形,然后求出BD,再根据AC=BC=CD+BD求解即可;(2)利用“HL”证明△ACD与△AED全等,根据全等三角形对应边相等可得AC=AE,再根据AB=AE+BE整理即可得证.【题目详解】(1)解:∵AD是△ABC的角平分线,∠C=90°,DE⊥AB,∴DE=CD=1cm,又∵AC=BC,∠C=90°,∴∠B=∠BAC=45°,∴△BDE为等腰直角三角形.∴BD=DE=cm,∴AC=BC=CD+BD=(1+)cm.(2)证明:在Rt△ACD和Rt△AED中,,∴Rt△ACD≌Rt△AED(HL),∴AC=AE,∵△BDE为等腰直角三角形,∴BE=DE=CD,∵AB=AE+BE,∴AB=AC+CD.【题目点拨】本题考查了角平分线的性质,全等三角形的判定与性质,等腰直角三角形的判定与性质.熟记各性质是解题的关键.23、(1);(2)①②【解题分析】

(1)阅读材料可知:主要是对等号左边的多项式正确的分组,变形成两个平方

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论