2024届湖北省枣阳市八年级数学第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届湖北省枣阳市八年级数学第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届湖北省枣阳市八年级数学第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届湖北省枣阳市八年级数学第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届湖北省枣阳市八年级数学第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩19页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届湖北省枣阳市八年级数学第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.等边三角形的边长为2,则它的面积为A. B. C. D.12.如图,A、B两地被池塘隔开,小康通过下列方法测出了A、B间的距离:先在AB外选一他点C,然后测出AC,BC的中点M、N,并测量出MN的长为18m,由此他就知道了A、B间的距离.下列有关他这次探究活动的结论中,错误的是()A.AB=36m B.MN∥AB C.MN=CB D.CM=AC3.下列运算结果正确的是()A.=﹣3 B.(﹣)2=2 C.÷=2 D.=±44.下列各式中,属于分式的是()A. B. C. D.5.下列各式中,最简二次根式为()A. B. C. D.6.某楼盘2016年房价为每平方米15600元,经过两年连续降价后,2018年房价为每平方米12400元。设该楼盘这两年房价每年平均降低率为x,根据题意可列方程为()A.15600(1-2x)=12400 B.2×15600(1-2x)=12400C.15600(1-x)2=12400 D.15600(1-x2)=124007.如图,已知△ABC中,AB=10,AC=8,BC=6,DE是AC的垂直平分线,DE交AB于点D,交AC于点E,连接CD,则CD的长度为()A.3 B.4 C.4.8 D.58.如图,将一个含30°角的直角三角板ABC绕点A旋转,使得点B、A、C′在同一条直线上,则旋转角∠BAB′的度数是().A.90° B.120° C.150° D.160°9.中国药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项,已知显微镜下某种疟原虫平均长度为0.0000015米,该长度用科学记数法可表示为()A.米 B.米 C.米 D.米10.下列说法正确的是()A.长度相等的两个向量叫做相等向量;B.只有方向相同的两个向量叫做平行向量;C.当两个向量不相等时,这两个有向线段的终点一定不相同;D.减去一个向量相当于加上这个向量的相反向量.二、填空题(每小题3分,共24分)11.如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=a,CE=b,H是AF的中点,那么CH的长是______.(用含a、b的代数式表示)12.二次根式的值是________.13.直角三角形的两条直角边长分别为、,则这个直角三角形的斜边长为________cm.14.如图,在中,点是边上的动点,已知,,,现将沿折叠,点是点的对应点,设长为.(1)如图1,当点恰好落在边上时,______;(2)如图2,若点落在内(包括边界),则的取值范围是______.15.如图,四边形ABCD为菱形,点A在y轴正半轴上,AB∥x轴,点B,C在反比例函数上,点D在反比例函数上,那么点D的坐标为________.16.已知是一次函数,则__________.17.在△ABC中,∠C=90°,若b=7,c=9,则a=_____.18.将菱形以点为中心,按顺时针方向分别旋转,,后形成如图所示的图形,若,,则图中阴影部分的面积为__.三、解答题(共66分)19.(10分)已知,矩形ABCD中,AB=6cm,BC=18cm,AC的垂直平分线EF分别交AD、BC于点E、F,垂足为O.(1)如图1,连接AF、CE.求证四边形AFCE为菱形,并求AF的长;(2)如图2,动点P、Q分别从A、C两点同时出发,沿△AFB和△CDE各边匀速运动一周.即点P自A→F→B→A停止,点Q自C→D→E→C停止.在运动过程中.①已知点P的速度为每秒10cm,点Q的速度为每秒6cm,运动时间为t秒,当A、C、P、Q四点为顶点的四边形是平行四边形时,求t的值.②若点P、Q的运动路程分别为x、y(单位:cm,xy≠0),已知A、C、P、Q四点为顶点的四边形是平行四边形,求x与y满足的函数关系式.20.(6分)如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=15cm,∠B=90°,DC=5cm.点P从点A向点D以lcm/s的速度运动,到D点停止,点Q从点C向B点以2cm/s的速度运动,到B点停止,点P,Q同时出发,设运动时间为t(s).(1)用含t的代数式表示:AP=;BQ=.(2)当t为何值时,四边形PDCQ是平行四边形?(3)当t为何值时,△QCD是直角三角形?21.(6分)如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,过点E作EF∥CD交BC的延长线于点F,连接CD.(1)求证:DE=CF;(2)求EF的长.22.(8分)已知:如图,四边形中,分别是的中点.求证:四边形是平行四边形.23.(8分)如图,四边形是正方形,点是边上的任意一点,于点,,且交于点,求证:(1)(2)24.(8分)阅读下列材料:数学课上,老师出示了这样一个问题:如图1,正方形为中,点、在对角线上,且,探究线段、、之间的数量关系,并证明.某学习小组的同学经过思考,交流了自己的想法:小明:“通过观察和度量,发现与存在某种数量关系”;小强:“通过观察和度量,发现图1中线段与相等”;小伟:“通过构造(如图2),证明三角形全等,进而可以得到线段、、之间的数量关系”.老师:“此题可以修改为‘正方形中,点在对角线上,延长交于点,在上取一点,连接(如图3).如果给出、的数量关系与、的数量关系,那么可以求出的值”.请回答:(1)求证:;(2)探究线段、、之间的数量关系,并证明;(3)若,,求的值(用含的代数式表示).25.(10分)如图,直线的解析式为,且与x轴交于点D,直线经过点A、B,直线,相交于点C.求点D的坐标;求的面积.26.(10分)为了加强学生课外阅读,开阔视野,某校开展了“书香校园,从我做起”的主题活动,学校随机抽取了部分学生,对他们一周的课外阅读时间进行调查,绘制出频数分布表和频数分布直方图的一部分如下:课外阅读时间(单位:小时)频数(人数)频率0<t≤220.042<t≤430.064<t≤6150.306<t≤8a0.50t>85b请根据图表信息回答下列问题:(1)频数分布表中的a=,b=;(2)将频数分布直方图补充完整;(3)学校将每周课外阅读时间在8小时以上的学生评为“阅读之星”,请你估计该校2000名学生中评为“阅读之星”的有多少人?

参考答案一、选择题(每小题3分,共30分)1、A【解题分析】

过等边三角形一条边做高,所以底边被分成了相等的两半,用勾股定理求出高等于,再用三角形面积公式可得:2×=.【题目详解】过等边三角形一条边做高,所以底边被分成了相等的两半,根据勾股定理可得:高等于,由三角形面积公式可得:2×=.故选A.【题目点拨】本题主要考查了等边三角形的性质及勾股定理的应用,解决本题的关键熟练掌握等边三角形的性质和勾股定理.2、C【解题分析】

通过构造相似三角形即可解答.【题目详解】解:根据题意可得在△ABC中△ABC∽△MNC,又因为M.N是AC,BC的中点,所以相似比为2:1,MN//AB,B正确,CM=AC,D正确.即AB=2MN=36,A正确;MN=AB,C错误.故本题选C.【题目点拨】本题考查相似三角形的判定与运用,熟悉掌握是解题关键.3、B【解题分析】

根据平方根和算术平方根的知识点进行解答得到答案.【题目详解】A.,错误;B.(﹣)2=2,正确;C.,错误;D.,错误;故选B.【题目点拨】本题主要考查二次根式的性质与化简,仔细检查是关键.4、C【解题分析】

根据分式的定义,可得出答案.【题目详解】A、分母中不含未知数故不是分式,故错误;B、是分数形式,但分母不含未知数不是分式,故错误;C、是分式,故正确;D、分母中不含未知数不是分式,故错误.故选C【题目点拨】本题考查了分式的定义,熟练掌握分式的概念是正确求解的关键.5、B【解题分析】

根据最简二次根式具备的条件:被开方数不含分母,被开方数中不含能开得尽方的因数或因式,逐一进行判断即可得出答案.【题目详解】A被开方数中含有能开得尽方的因数54,不是最简二次根式,故错误;B符合最简二次根式的条件,故正确;C被开方数中含有分母6,不是最简二次根式,故错误;D被开方数中含有能开得尽方的因式,不是最简二次根式,故错误;故选:B.【题目点拨】本题主要考查最简二次根式,掌握最简二次根式具备的条件是解题的关键.6、C【解题分析】分析:首先根据题意可得2017年的房价=2016年的房价×(1+增长率),2018年的房价=2017年的房价×(1+增长率),由此可得方程.详解:解:设这两年平均房价年平均增长率为x,根据题意得:15600(1-x)2=12400,故选C.点睛:本题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为.7、D【解题分析】

已知AB=10,AC=8,BC=8,根据勾股定理的逆定理可判定△ABC为直角三角形,又因DE为AC边的中垂线,可得DE⊥AC,AE=CE=4,所以DE为三角形ABC的中位线,即可得DE==3,再根据勾股定理求出CD=5,故答案选D.考点:勾股定理及逆定理;中位线定理;中垂线的性质.8、C【解题分析】

根据旋转角的定义,对应点与旋转中心所连线段的夹角等于旋转角,即可求解.【题目详解】旋转角是∠BAB′=180°-30°=150°.故选C.【题目点拨】本题考查的是旋转的性质,掌握对应点与旋转中心所连线段的夹角等于旋转角是解题的关键.9、A【解题分析】

绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:0.0000015=1.5×10-6,

故选:A.【题目点拨】本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.10、D【解题分析】【分析】相等向量:长度相等且方向相同的两个向量叫做相等向量;平行向量(也叫共线向量):方向相同或相反的非零向量;平行向量包含相等向量的情况.即相等向量一定是平行向量,但是平行向量不一定是相等向量;长度相等且方向相反的两个向量.根据相关定义进行判断.【题目详解】长度相等且方向相同的两个向量叫做相等向量,故选项A错误;方向相同或相反的非零向量叫做平行向量,故选项B错误;当两个向量不相等时,这两个有向线段的终点可能相同,故选项C错误;减去一个向量相当于加上这个向量的相反向量,故选项D正确.故选:D【题目点拨】本题考核知识点:向量.解题关键点:理解向量的相关定义.二、填空题(每小题3分,共24分)11、【解题分析】

连接AC、CF,根据正方形的性质得到∠ACF=90°,根据勾股定理求出AF的长,根据直角三角形中,斜边上的中线等于斜边的一半计算即可.【题目详解】解:连接AC、CF,在正方形ABCD和正方形CEFG中,∠ACG=45°,∠FCG=45°,∴∠ACF=90°,∵BC=a,CE=b,∴AC=a,CF=b,由勾股定理得,AF==,∵∠ACF=90°,H是AF的中点,∴CH=,故答案为:.【题目点拨】本题考查的是直角三角形的性质、勾股定理的应用、正方形的性质,掌握在直角三角形中,斜边上的中线等于斜边的一半是解题的关键.12、1【解题分析】

根据二次根式的性质进行化简即可得解.【题目详解】=|-1|=1.故答案为:-1.【题目点拨】此题主要考查了二次根式的化简,注意:.13、【解题分析】

利用勾股定理直接计算可得答案.【题目详解】解:由勾股定理得:斜边故答案为:.【题目点拨】本题考查的是勾股定理的应用,掌握勾股定理是解题的关键.14、2;【解题分析】

(1)根据折叠的性质可得,由此即可解决问题;(2)作AH⊥DE于H.解直角三角形求出AH、HB′、DH,再证明,求出EB′即可解决问题;【题目详解】解:(1)∵折叠,∴.∵,∴,∴,∴,∴.(2)当落在上时,过点作于点.∵,,∴,∴.在中,,∴.∵,∴,∴.∴,∴,∴.【题目点拨】本题考查翻折变换、平行四边形的性质、解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.15、【解题分析】分析:首先设出菱形边长为a,由AB=a,得出C、D的坐标,过点C作CE⊥AB,由勾股定理可得D点坐标.详解:设菱形边长为a,即AB=a,设C点坐标为(b,),∵BC∥x轴,∴D点纵坐标为:,∴D点横坐标为:,则x=-4b,∴D(-4b,),∵CD=a,∴4b+b=a,a=5b,过点C作CE⊥AB,则BE=a-AE=a-b=4b,BC=a=5b,由勾股定理:CE=3b,CE=,∴b²=1-=,b=,∴D.故答案为.点睛:本题考查了反比例函数图象上点的坐标特征,勾股定理等知识,解题的关键是设出菱形边长,利用反比例函数的性质表示出菱形各顶点的坐标,进而求解.16、【解题分析】

根据一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1,可得答案.【题目详解】解;由y=(m-1)xm2−8+m+1是一次函数,得,解得m=-1,m=1(不符合题意的要舍去).故答案为:-1.【题目点拨】本题主要考查了一次函数的定义,一次函数y=kx+b的定义条件是:k、b为常数,k≠0,自变量次数为1.17、4【解题分析】

利用勾股定理:a2+b2=c2,直接解答即可【题目详解】∵∠C=90°∴a2+b2=c2∵b=7,c=9,∴a===4故答案为4【题目点拨】本题考查了勾股定理,对应值代入是解决问题的关键18、【解题分析】

由菱形性质可得AO,BD的长,根据.可求,则可求阴影部分面积.【题目详解】连接,交于点,,四边形是菱形,,,,,且,将菱形以点为中心按顺时针方向分别旋转,,后形成的图形,故答案为:【题目点拨】本题考查了:图形旋转的性质、菱形的性质、直角三角形的性质,掌握菱形性质是解题的关键.三、解答题(共66分)19、(1)证明见解析,;(2)①,②.【解题分析】

(1)首先证明,由此得出,从而证明四边形为菱形,然后在Rt△ABF中利用勾股定理进一步求解即可;(2)①根据题意依次发现当点在上时,点在上以及点在上时,点在或上,也不能构成平行四边形,当点在上、点在上时,才能构成平行四边形,据此进一步求解即可;②以、、、四点为顶点的四边形是平行四边形时,根据题意分当点在上、点在上时或当点在上、点在上时以及当点在上、点在上时三种情况进一步分析求解即可.【题目详解】(1)证明:∵四边形是矩形,∴,∴,.∵垂直平分,垂足为,∴,在和△COF中,∵∴,∴,∴四边形为平行四边形,又∵,∴四边形为菱形,设菱形的边长,则在Rt△ABF中,,解得:,∴;(2)①显然当点在上时,点在上,此时、、、四点不可能构成平行四边形;同理点在上时,点在或上,也不能构成平行四边形.因此只有当点在上、点在上时,才能构成平行四边形.∴以、、、四点为顶点的四边形是平行四边形时,,∵点的速度为每秒,点的速度为每秒,运动时间为秒,∴,,∴,解得:,∴以、、、四点为顶点的四边形是平行四边形时,;②由题意得,以、、、四点为顶点的四边形是平行四边形时,点、在互相平行的对应边上.分三种情况:其一:如图1,当点在上、点在上时,,,即;其二:如图2,当点在上、点在上时,,,即;其三:如图3,当点在上、点在上时,,,即,综上所述,与满足的函数关系式是.【题目点拨】本题主要考查了菱形的判定、全等三角形性质及判定、平行四边形的动点问题与一次函数的综合运用,熟练掌握相关方法是解题关键.20、(1)tcm,(15﹣2t)cm;(2)t=3秒;(3)当t为秒或秒时,△QCD是直角三角形.【解题分析】

(1)根据速度、路程以及时间的关系和线段之间的数量关系,即可求出AP,BQ的长(2)当AP=CQ时,四边形APQB是平行四边形,建立关于t的一元一次方程方程,解方程求出符合题意的t值即可;(3)当∠CDQ=90°或∠CQD=90°△QCD是直角三角形,分情况讨论t的一元一次方程方程,解方程求出符合题意的t值即可;【题目详解】(1)由运动知,AP=t,CQ=2t,∴BQ=BC﹣CQ=15﹣2t,故答案为tcm,(15﹣2t)cm;(2)由运动知,AP=t,CQ=2t,∴DP=AD﹣AP=12﹣t,∵四边形PDCQ是平行四边形,∴PD=CQ,∴12﹣t=2t,∴t=3秒;(3)∵△QCD是直角三角形,∴∠CDQ=90°或∠CQD=90°,①当∠CQD=90°时,BQ=AD=12,∴15﹣2t=12,∴t=秒,②当∠CDQ=90°时,如图,过点D作DE⊥BC于E,∴四边形ABED是矩形,∴BE=AD=12,∴CE=BC﹣BE=3,∵∠CED=∠CDQ=90°,∠C=∠C,∴△CDE∽△CQD,∴,∴,∴t=秒,即:当t为秒或秒时,△QCD是直角三角形.【题目点拨】此题考查平行四边形的判定和直角三角形的判定,解题关键是掌握性质并且灵活运用求解21、(1)见解析;(2).【解题分析】

(1)直接利用三角形中位线定理得出DE∥BC,再利用平行四边形的判定方法得出答案;(2)利用等边三角形的性质结合平行四边形的性质得出DC=EF,进而求出答案.【题目详解】解:(1)∵D、E分别为AB、AC的中点,∴DE∥BC,DE=BC,∵EF∥CD∴四边形DEFC是平行四边形,∴DE=CF.(2)∵四边形DEFC是平行四边形,∴DC=EF,∵D为AB的中点,等边△ABC的边长是2,∴AD=BD=1,CD⊥AB,BC=2,∴DC=EF=.【题目点拨】此题主要考查了等边三角形的性质以及平行四边形的判定与性质、三角形中位线定理等知识,正确掌握平行四边形的性质是解题关键.22、见解析.【解题分析】

连接BD,利用三角形中位线定理可得FG∥BD,FG=BD,EH∥BD,EH=BD.进而得到FG∥EH,且FG=EH,可根据一组对边平行且相等的四边形是平行四边形证出结论.【题目详解】证明:如图,连接BD.∵F,G分别是BC,CD的中点,所以FG∥BD,FG=BD.∵E,H分别是AB,DA的中点.∴EH∥BD,EH=BD.∴FG∥EH,且FG=EH.∴四边形EFGH是平行四边形.【题目点拨】此题主要考查了中点四边形,关键是掌握平行四边形的判定和三角形中位线定理,三角形的中位线平行于第三边且等于第三边的一半.23、(1)见详解;(2)见详解.【解题分析】

(1)证明△AED≌△BFA即可说明DE=AF;(2)由△AED≌△BFA可得AE=BF,又AFAE=EF,所以结论可证.【题目详解】证明:(1)∵四边形ABCD是正方形,

∴AD=AB,∠DAE+∠BAF=90°.

∵∠ABF+∠BAF=90°,

∴∠DAE=∠ABF.

又∠AED=∠BFA.

∴△AED≌△BFA(AAS).

∴DE=AF;

(2)∵△AED≌△BFA,

∴AE=BF.

∵AF-AE=EF,

∴AF-BF=EF.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质,解决此类问题一般是通过三角形的全等转化线段.24、(1)详见解析;(2),证明详见解析;(3

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论