版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届广西岑溪市数学八年级第二学期期末综合测试试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每小题3分,共30分)1.下列条件中能构成直角三角形的是().A.2、3、4 B.3、4、5 C.4、5、6 D.5、6、72.下图为正比例函数的图像,则一次函数的大致图像是()A. B. C. D.3.已知正比例函数,且随的增大而减小,则的取值范围是()A. B. C. D.4.如图是由三个边长分别为6、9、x的正方形所组成的图形,若直线AB将它分成面积相等的两部分,则x的值是()A.1或9 B.3或5 C.4或6 D.3或65.下列图案中,不是中心对称图形的是()A. B.C. D.6.下列字母中既是中心对称图形又是轴对称图形的是()A. B. C. D.7.不等式x≥2的解集在数轴上表示为()A. B.C. D.8.以下列各组数为三角形的边长,能构成直角三角形的是()A.1,2,3 B.1,1, C.2,4,5 D.6,7,89.若方程是一元二次方程,则m的值为()A.0 B.±1 C.1 D.–110.勾股定理是人类最伟大的科学发现之一,在我国古算书《周髀算经》中早有记载.如图1,以直角三角形的各边为边分别向外作正方形,再把较小的两张正方形纸片按图2的方式放置在最大正方形内.若知道图中阴影部分的面积,则一定能求出()A.直角三角形的面积B.最大正方形的面积C.较小两个正方形重叠部分的面积D.最大正方形与直角三角形的面积和二、填空题(每小题3分,共24分)11.有一个一元二次方程,它的一个根x1=1,另一个根-2<x2<1.请你写出一个符合这样条件的方程:_________.12.2x-3>-5的解集是_________.13.如图,在平面直角坐标系中,矩形OABC的顶点A在y轴正半轴上,边AB、OA(AB>OA)的长分别是方程x2−11x+24=0的两个根,D是AB上的一动点(不与A.B重合).AB=8,OA=3.若动点D满足△BOC与AOD相似,则直线OD的解析式为____.14.将正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如图所示方式放置,点A1,A2,A3,…和点C1,C2,C3,…分别在直线和x轴上,则点B2019的横坐标是______.15.如图,在菱形ABCD中,AC、BD交于点O,BC=5,若DE∥AC,CE∥BD,则OE的长为_____.16.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是______,DC边上的高AF的长是______.17.函数中,自变量x的取值范围是___________.18.如图,在直角坐标平面内的△ABC中,点A的坐标为(0,2),点C的坐标为(5,5),如果要使△ABD与△ABC全等,且点D坐标在第四象限,那么点D的坐标是__________;三、解答题(共66分)19.(10分)如图,在平行四边形ABCD中,点M为边AD的中点,过点C作AB的垂线交AB于点E,连接ME,已知AM=2AE=4,∠BCE=30°.(1)求平行四边形ABCD的面积;(2)求证:∠EMC=2∠AEM.20.(6分)解不等式组,并在数轴上把解集表示出来.(1)(2)21.(6分)甲、乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50米/分的速度沿同一路线行走.设甲、乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.(1)求甲行走的速度;(2)在坐标系中,补画s关于t的函数图象的其余部分;(3)问甲、乙两人何时相距360米?22.(8分)随着生活水平的不断提高,越来越多的人选择到电影院观看电影,体验视觉盛宴,并且更多的人通过网上平台购票,既快捷又能享受更多优惠.某电影城2019年从网上购买张电影票的费用比现场购买张电影票的费用少元:从网上购买张电影票的费用和现场购买张电影票的费用共元.(1)求该电影城2019年在网上购票和现场购票每张电影票的价格为多少元?(2)2019年五一当天,该电影城按照2019年网上购票和现场购票的价格销售电影票,当天售出的总票数为张.五一假期过后,观影人数出现下降,于是电影城决定从5月5日开始调整票价:现场购票价格下调,网上购票价格不变,结果发现,现场购票每张电影票的价格每降低元,售出总票数就比五一当天增加张.经统计,5月5日售出的总票数中有的电影票通过网上售出,其余通过现场售出,且当天票房总收入为元,试求出5月5日当天现场购票每张电影票的价格为多少元?23.(8分)分解因式:(1)x(x+y)(x-y)-x(x+y)2(2)(x-1)2+2(1-x)•y+y224.(8分)如图,过点A的一次函数的图象与正比例函数y=2x的图象相交于点B.(1)求该一次函数的解析式;(2)若该一次函数的图象与x轴交于点D,求△BOD的面积.25.(10分)如图,已知BD是△ABC的角平分线,ED是BC的垂直平分线,∠BAC=90°,AD=1.①求∠C的度数,②求CE的长.26.(10分)如图,有长为48米的篱笆,一面利用墙(墙的最大可用长度25米),围成中间隔有一道篱笆的长方形花圃ABCD.(1)当AB的长是多少米时,围成长方形花圃ABCD的面积为180m2(2)能围成总面积为240m2的长方形花圃吗?说明理由
参考答案一、选择题(每小题3分,共30分)1、B【解题分析】
根据勾股定理逆定理进行计算判断即可.【题目详解】A.,故不能构成直角三角形;B.,故能构成直角三角形;C.,故不能构成直角三角形;D.,故不能构成直角三角形.故选:B.【题目点拨】本题考查勾股定理的逆定理,熟记定理是关键,属于基础题型.2、B【解题分析】
根据正比例函数图象所经过的象限,得出k<0,由此可推知一次函数象与y轴交于负半轴且经过一、三象限.【题目详解】解:∵正比例函数y=kx(k≠0)的图象经过二、四象限,∴k<0,∴一次函数y=x+k的图象与y轴交于负半轴且经过一、三象限.故选B.【题目点拨】本题考查了一次函数图象与比例系数的关系.3、D【解题分析】
根据正比例函数的性质,时,随的增大而减小,即,即可得解.【题目详解】根据题意,得即故答案为D.【题目点拨】此题主要考查正比例函数的性质,熟练掌握,即可解题.4、D【解题分析】以AB为对角线将图形补成长方形,由已知可得缺失的两部分面积相同,即3×6=x×(9-x),解得x=3或x=6,故选D.【题目点拨】本题考查了正方形的性质,图形的面积的计算,准确地区分和识别图形是解题的关键.5、D【解题分析】
把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;对于图A,分析可知,其绕着图形的圆心旋转180°后与原来的图形重合,故是中心对称图形,同理再分析其他选项即可.【题目详解】根据中心对称图形的概念可知,A、B、C都是中心对称图形,不符合题意;D不是中心对称图形,符合题意.故选:D.【题目点拨】本题考查了中心对称图形的判断,解题的关键是掌握中心对称图形定义;6、A【解题分析】
根据中心对称图形及轴对称图形的概念即可解答.【题目详解】选项A是轴对称图形,也是中心对称图形;选项B是轴对称图形,不是中心对称图形;选项C不是轴对称图形,也不是中心对称图形;选项D不是轴对称图形,是中心对称图形.故选A.【题目点拨】本题考查了中心对称图形及轴对称图形的概念,熟知中心对称图形及轴对称图形的判定方法是解决问题的关键.7、C【解题分析】
根据不等式组解集在数轴上的表示方法就可得到.【题目详解】解:x≥2的解集表示在数轴上2右边且为包含2的数构成的集合,在数轴上表示为:故答案为:C.【题目点拨】不等式组解集在数轴上的表示方法:把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.8、B【解题分析】
由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【题目详解】A、12+22≠32,故不是直角三角形,故此选项错误;B、12+12=()2,故是直角三角形,故此选项正确;C、22+42≠52,故不是直角三角形,故此选项错误;D、62+72≠82,故不是直角三角形,故此选项错误.故选B.【题目点拨】本题考查勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.9、D【解题分析】
根据一元二次方程的定义:只含有一个未知数,并且未知数的最高指数是2的整式方程,且二次项系数不等于0,即可进行求解,【题目详解】因为方程是一元二次方程,所以,,解得且所以,故选D.【题目点拨】本题主要考查一元二次方程的定义,解决本题的关键是要熟练掌握一元二次方程的定义.10、C【解题分析】
根据勾股定理得到c1=a1+b1,根据正方形的面积公式、长方形的面积公式计算即可.【题目详解】设直角三角形的斜边长为c,较长直角边为b,较短直角边为a,由勾股定理得,c1=a1+b1,阴影部分的面积=c1-b1-a(c-b)=a1-ac+ab=a(a+b-c),较小两个正方形重叠部分的长=a-(c-b),宽=a,则较小两个正方形重叠部分底面积=a(a+b-c),∴知道图中阴影部分的面积,则一定能求出较小两个正方形重叠部分的面积,故选C.【题目点拨】本题考查的是勾股定理,如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a1+b1=c1.二、填空题(每小题3分,共24分)11、(答案不唯一).【解题分析】
可选择x2=-1,则两根之和与两根之积可求,再设一元二次方程的二次项系数为1,那么可得所求方程.【题目详解】解:∵方程的另一个根-2<x2<1,∴可设另一个根为x2=-1,∵一个根x1=1,∴两根之和为1,两根之积为-1,设一元二次方程的二次项系数为1,此时方程应为.【题目点拨】本题考查的是已知两数,构造以此两数为根的一元二次方程,这属于一元二次方程根与系数关系的知识,对于此类问题:知道方程的一个根和另一个根的范围,可设出另一个根的具体值,进一步求出两根之和与两根之积,再设一元二次方程的二次项系数为1,那么所求的一元二次方程即为.12、x>-1.【解题分析】
先移项,再合并同类项,化系数为1即可.【题目详解】移项得,2x>-5+3,合并同类项得,2x>-2,化系数为1得,x>-1.故答案为:x>-1.【题目点拨】本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.13、y=−83【解题分析】
分两种情况:△BOC∽△DOA和△BOC∽△ODA,由相似三角形的对应边成比例求得点D的坐标,由待定系数法求得直线OD的解析式;【题目详解】若△BOC∽△DOA.则BCOC即38所以AD=98若△BOC∽△ODA,可得AD=8(与题意不符,舍去)设直线OD解析式为y=kx,则3=−98k即k=−83直线OD的解析式为y=−83x【题目点拨】此题考查一次函数的性质,解题关键在于利用相似三角形的性质求解.14、.【解题分析】
利用一次函数图象上点的坐标特征及正方形的性质可得出点B1,B2,B3,B4,B5的坐标,根据点的坐标的变化可找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”,再代入n=2019即可得出结论.【题目详解】当x=0时,y=x+1=1,∴点A1的坐标为(0,1).∵四边形A1B1C1O为正方形,∴点B1的坐标为(1,1),点C1的坐标为(1,0).当x=1时,y=x+1=2,∴点A1的坐标为(1,2).∵A2B2C2C1为正方形,∴点B2的坐标为(3,2),点C2的坐标为(3,0).同理,可知:点B3的坐标为(7,4),点B4的坐标为(15,8),点B5的坐标为(31,16),…,∴点Bn的坐标为(2n-1,2n-1)(n为正整数),∴点B2019的坐标为(22019-1,22018).故答案为22019-1.【题目点拨】本题考查了一次函数图象上点的坐标特征、正方形的性质以及规律型:点的坐标,根据点的坐标的变化找出变化规律“点Bn的坐标为(2n-1,2n-1)(n为正整数)”是解题的关键.15、1【解题分析】
由菱形的性质可得BC=CD=1,AC⊥BD,由题意可证四边形ODEC是矩形,可得OE=CD=1.【题目详解】解:∵四边形ABCD是菱形,∴BC=CD=1,AC⊥BD,∵DE∥AC,CE∥BD,∴四边形ODEC是平行四边形,且AC⊥BD,∴四边形ODEC是矩形,∴OE=CD=1,故答案为1.【题目点拨】本题考查了菱形的性质,矩形的判定和性质,证明四边形ODEC是矩形是解题的关键.16、12,1.【解题分析】
用BC×AE可求平行四边形的面积,再借助面积12=CD×AF可求AF.【题目详解】解:根据平行四边形的面积=底×高,可得BC×AE=6×2=12;则CD×AF=12,即4×AF=12,所以AF=1.故答案为12,1.【题目点拨】本题主要考查了平行四边形的性质,面积法求解平行四边形的高或某边长是解决此类问题常用的方法.17、且.【解题分析】
根据二次根式的性质以及分式的意义,分别得出关于的关系式,然后进一步加以计算求解即可.【题目详解】根据二次根式的性质以及分式的意义可得:,且,∴且,故答案为:且.【题目点拨】本题主要考查了二次根式的性质与分式的性质,熟练掌握相关概念是解题关键.18、(3,-3)【解题分析】
根据全等三角形的性质,三条对应边均相等,又顶点C与顶点D相对应,所以点D与C关于AB对称,即点D与点C对与AB的相对位置一样.【题目详解】解:∵△ABD与△ABC全等,
∴C、D关于AB对称,顶点C与顶点D相对应,即C点和D点到AB的相对位置一样.
∵由图可知,AB平行于x轴,
∴D点的横坐标与C的横坐标一样,即D点的横坐标为3.
又∵点A的坐标为(0,2),点C的坐标为(3,3),点D在第四象限,
∴C点到AB的距离为2.
∵C、D关于AB轴对称,
∴D点到AB的距离也为2,
∴D的纵坐标为-3.
故D(3,-3).三、解答题(共66分)19、(1);(2)证明见解析.【解题分析】
(1)由AM=2AE=4,利用平行四边形的性质可求出BC=AD=1,利用直角三角形的性质得出BE、CE的长,进而得出答案;(2)延长EM,CD交于点N,连接CM.通过证明△AEM≌△DNM,可得EM=MN,然后由直角三角形斜边的中线等于斜边的一半可证MN=MC,然后根据三角形外角的性质证明即可.【题目详解】(1)解:∵M为AD的中点,AM=2AE=4,∴AD=2AM=1.在▱ABCD的面积中,BC=CD=1,又∵CE⊥AB,∴∠BEC=90°,∵∠BCE=30°,∴BE=BC=4,∴AB=6,CE=4,∴▱ABCD的面积为:AB×CE=6×4=24;(2)证明:延长EM,CD交于点N,连接CM.∵在▱ABCD中,AB∥CD,∴∠AEM=∠N,在△AEM和△DNM中∵∠AEM=∠N,AM=DM,∠AME=∠DMN,∴△AEM≌△DNM(AAS),∴EM=MN,又∵AB∥CD,CE⊥AB,∴CE⊥CD,∴CM是Rt△ECN斜边的中线,∴MN=MC,∴∠N=∠MCN,∴∠EMC=2∠N=2∠AEM.【题目点拨】此题主要考查了平行四边形的性质、全等三角形的判定与性质、三角形外角的性质、直角三角形的性质等知识.熟练应用平行四边形的性质是解(1)关键,正确作出辅助线是解(2)的关键.20、(1),数轴见解析;(2),数轴见解析【解题分析】
(1)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可,(2)分别解两个不等式,找出两个解集的公共部分,即为不等式组的解集,再将不等式组的解集在数轴上表示出来即可.【题目详解】解:(1)解不等式2x-6<3x得:x>-6,解不等式得:x≤13,∴不等式组的解集为:,不等式组的解集在数轴上表示如下:(2)解不等式,解得:x,解不等式5x-1<3(x+1),解得:x<2,即不等式组的解集为:,不等组的解集在数轴上表示如下:【题目点拨】本题考查解一元一次不等式组和在数轴上表示不等式的解集,正确掌握解一元一次不等式组的方法是解题的关键.21、(1)30米/分;(2)见解析;(3)当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.【解题分析】
(1)由图象可知t=5时,s=11米,根据速度=路程÷时间,即可解答;(2)根据图象提供的信息,可知当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(110-101)=41米,甲到达图书馆还需时间;41÷30=15(分),所以35+15=1(分),所以当s=0时,横轴上对应的时间为1.(3)分别求出当12.5≤t≤35时和当35<t≤1时的函数解析式,根据甲、乙两人相距360米,即s=360,分别求出t的值即可.【题目详解】(1)甲行走的速度:11÷5=30(米/分);(2)当t=35时,甲行走的路程为:30×35=101(米),乙行走的路程为:(35-5)×1=110(米),∴当t=35时,乙已经到达图书馆,甲距图书馆的路程还有(110-101)=41米,∴甲到达图书馆还需时间;41÷30=15(分),∴35+15=1(分),∴当s=0时,横轴上对应的时间为1.补画的图象如图所示(横轴上对应的时间为1),(3)如图,设乙出发经过x分和甲第一次相遇,根据题意得:11+30x=1x,解得:x=7.5,7.5+5=12.5(分),由函数图象可知,当t=12.5时,s=0,∴点B的坐标为(12.5,0),当12.5≤t≤35时,设BC的解析式为:s=kt+b,(k≠0),把C(35,41),B(12.5,0)代入可得:解得:,∴s=20t-21,当35<t≤1时,设CD的解析式为s=k1x+b1,(k1≠0),把D(1,0),C(35,41)代入得:解得:∴s=-30t+110,∵甲、乙两人相距360米,即s=360,解得:t1=30.5,t2=38,∴当甲行走30.5分钟或38分钟时,甲、乙两人相距360米.【题目点拨】本题考查了行程问题的数量关系的运用,一次函数的解析式的运用,解答时求出函数的解析式是关键.22、(1)网上购票价格30元,现场购票价格50元;(2)5月5日当天现场购票每张电影票的价格为40元,见解析.【解题分析】
(1)首先设网上每张电影票价格为元,现场每张电影票价格为元,然后根据题意,列出关系式,即可得解;(2)首先设现场购票每张电影票的价格下降元,然后根据题意列出关系式,即可得解.【题目详解】(1)设网上每张电影票价格为元,现场每张电影票价格为元.解得:答:网上购票价格30元,现场购票价格50元.(2)设现场购票每张电影票的价格下降元解得(舍去),答:5月5日当天现场购票每张电影票的价格为40元.【题目点拨】此题主要考查二元一次方程组、一元一次方程的实际应用,关键是根据题意列出关系式,即可解题.23、(1)-2xy(x+y);(2)(x-1-y)2【解题分析】
(1)提公因式x(x+y),合并即可;(2)利用完全平方式进行分解.【题目详解】(1)原式=x(x+y)[(x-y)-(x+y)]=-2xy(x+y)(2)原式=(x-1)2-2(x-1)y+y2=(x-1-y)2【题目点拨】本题考查的知识点是提取公因式法因式分解和完全平方式,解题关键是求出多项式里各项的公因式,提公因式.24、(1)y=﹣x+1;(2)△BOD的面积=1.【解题分析】
(1)先根据直线的方向判定一次函数解析式中k的符号,再根据直线经过点B(1,1),判
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年-山西省安全员A证考试题库
- 广州珠江职业技术学院《气力输送与厂内运输》2023-2024学年第一学期期末试卷
- 贵阳学院《商务日语口译》2023-2024学年第一学期期末试卷
- 2025年湖北建筑安全员《C证》考试题库及答案
- 广州应用科技学院《有机化学实验二》2023-2024学年第一学期期末试卷
- 2025上海市安全员A证考试题库及答案
- 广州铁路职业技术学院《精密机械设计基础》2023-2024学年第一学期期末试卷
- 2025浙江省建筑安全员《A证》考试题库
- 2025山西省建筑安全员A证考试题库
- 2025上海建筑安全员A证考试题库附答案
- 保密培训记录表
- 专升本英语写作专题讲解课件
- 平安保险授权委托书
- 员工安全培训教育制度
- 深圳证券交易所
- 各种管道护理评分标准
- 体育赛事志愿者管理
- 辽宁华电高科环保技术有限公司油泥煤循环流化床协同资源化工业化试验项目环境影响评价报告书
- 复旦大学普物B期末考试试卷
- 剪映教程PPT版本新版剪影零基础教学课程课件
- 非煤矿山安全风险分级管控与安全隐患排查治理u000b双重预防机制建设知识
评论
0/150
提交评论