




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省濮阳市濮阳县八年级数学第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,字母M所代表的正方形的面积是()A.4 B.5 C.16 D.342.下列图形中,既是中心对称,又是轴对称的是()A. B. C. D.3.小明到单位附近的加油站加油,如图是小明所用的加油机上的数据显示牌,则数据中的变量有()A.金额 B.数量 C.单价 D.金额和数量4.下列调查:①了解夏季冷饮市场上冰淇淋的质量;②了解嘉淇同学20道英语选择題的通过率;③了解一批导弹的杀伤范围;④了解全国中学生睡眠情况.不适合普查而适合做抽样调查的是()A.①②④ B.①③④ C.②③④ D.①②③5.下列说法中不成立的是()A.在y=3x﹣1中y+1与x成正比例 B.在y=﹣中y与x成正比例C.在y=2(x+1)中y与x+1成正比例 D.在y=x+3中y与x成正比例6.关于的方程有两实数根,则实数的取值范围是()A. B. C. D.7.如图,在▱ABCD中,BE⊥AD于点E,BF⊥CD于点F,若BE=2,BF=3,▱ABCD的周长为20,则平行四边形的面积为()A.12 B.18 C.20 D.248.晋商大院的许多窗格图案蕴含着对称之美,现从中选取以下四种窗格图案,其中是中心对称图形但不是轴对称图形的是()A. B. C. D.9.如图,在菱形中,是菱形的高,若对角线、的长分别是6、8,则的长是A. B. C. D.510.如图,,要根据“”证明,则还要添加一个条件是()A. B. C. D.11.因式分解的正确结果是()A. B. C. D.12.某工厂现在平均每天比原计划多生产50台机器,现在生产600台所需时间与原计划生产450台机器所需时间相同.设原计划平均每天生产x台机器,根据题意,下面所列方程正确的是()A.= B.=C.= D.=二、填空题(每题4分,共24分)13.小数0.00002l用科学记数法表示为_____.14.如图,平行四边形ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=10,则DOE的周长为_____.15.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是__________.16.若方程x2+kx+9=0有两个相等的实数根,则k=_____.17.如图,点A,B在反比例函数(k>0)的图象上,AC⊥x轴,BD⊥x轴,垂足C,D分别在x轴的正、负半轴上,CD=k,已知AB=2AC,E是AB的中点,且△BCE的面积是△ADE的面积的2倍,则k的值是______.18.如图,过点N(0,-1)的直线y=kx+b与图中的四边形ABCD有不少于两个交点,其中A(2,3)、B(1,1)、C(4,1)、D(4,3),则k的取值范围____________三、解答题(共78分)19.(8分)如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,点G、H分别在BA和DC的延长线上,且AG=CH,连接GE、EH、HF、FG.求证:(1)△BEG≌△DFH;(2)四边形GEHF是平行四边形.20.(8分)如图,在四边形中,,,对角线,交于点,平分,过点作,交的延长线于点,连接.(1)求证:四边形是菱形;(2)若,,求的长.21.(8分)已知关于x的函数y=(m+3)x|m+2|是正比例函数,求m的值.22.(10分)每年的6月5日为世界环保日,为了提倡低碳环保,某公司决定购买10台节省能源的新设备,现有A、B两种型号的设备可供选购,A、B两种型号的设备每台的价格分别为12万元和10万元(1)该公司经预算决定购买节省能源的新设备的资金不超过110万元,则A型设备最多购买多少台?(2)已知A型设备的产量为240吨/月,B型设备的产量为180吨/月,若每月要求总产量不低于2040吨,则A型设备至少要购买多少台?23.(10分)如图,在正方形网络中,△ABC的三个顶点都在格点上,点A、B、C的坐标分别为A(-2,4)、B(-2,0)、C(-4,1),结合所给的平面直角坐标系解答下列问题:(1)画出△ABC关于原点O中心对称图形△A1B1C1.(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2并写出点B2、C2的坐标.24.(10分)如图,在平面直角坐标系中,O为坐标原点,P、Q是反比例函数(x>0)图象上的两点,过点P、Q分别作直线且与x、y轴分别交于点A、B和点M、N.已知点P为线段AB的中点.(1)求△AOB的面积(结果用含a的代数式表示);(2)当点Q为线段MN的中点时,小菲同学连结AN,MB后发现此时直线AN与直线MB平行,问小菲同学发现的结论正确吗?为什么?25.(12分)本工作,某校对八年级一班的学生所穿校服型号情况进行了摸底调查,并根据调查结果绘制了如图所示的两幅不完整的统计图(校服型号以身高作为标准,共分为6种型号)。条形统计图扇形统计图根据以上信息,解答下列问题:(1)该班共有多少名学生?其中穿型校服的学生有多少名?(2)在条形统计图中,请把空缺部分补充完整;(3)在扇形统计图中,请计算型校服所对应的扇形圆心角的大小;(4)求该班学生所穿校服型号的中位数。26.计算题:(1);(2);(3);(4).
参考答案一、选择题(每题4分,共48分)1、C【解题分析】分析:根据勾股定理:直角三角形斜边的平方减直角边的平方等于另一直角边的平方,可得答案.详解:由勾股定理,得:M=25﹣9=1.故选C.点睛:本题考查了勾股定理,利用了勾股定理:两直角边的平方和等于斜边的平方.2、C【解题分析】
根据中心对称图形,轴对称图形的定义进行判断.【题目详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【题目点拨】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.3、D【解题分析】
根据常量与变量的定义即可判断.【题目详解】常量是固定不变的量,变量是变化的量,单价是不变的量,而金额是随着数量的变化而变化,故选:D.【题目点拨】本题考查常量与变量,解题的关键是正确理解常量与变量,本题属于基础题型.4、B【解题分析】
调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【题目详解】解:①④中个体数量多,范围广,工作量大,不宜采用普查,只能采用抽样调查;③了解一批导弹的杀伤范围具有破坏性不宜普查;②个体数量少,可采用普查方式进行调查.故选B.【题目点拨】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.5、D【解题分析】试题解析:A.∵y=3x−1,∴y+1=3x,∴y+1与x成正比例,故本选项正确.B.∵∴y与x成正比例,故本选项正确;C.∵y=2(x+1),∴y与x+1成正比例,故本选项正确;D.∵y=x+3,不符合正比例函数的定义,故本选项错误.故选D.6、A【解题分析】
根据方程有实数根列不等式即可求出答案.【题目详解】∵方程有两实数根,∴∆,即16-4a,∴,故选:A.【题目点拨】此题考查一元二次方程的判别式,根据一元二次方程的根的情况求出未知数的值,正确掌握根的三种情况是解题的关键.7、A【解题分析】
根据平行四边形的周长求出AD+CD,再利用面积列式求出AD、CD的关系,然后求出AD的长,再利用平行四边形的面积公式列式计算即可得解.【题目详解】解:∵▱ABCD的周长为20,∴2(AD+CD)=20,∴AD+CD=10①,∵S▱ABCD=AD•BE=CD•BF,∴2AD=3CD②,联立①、②解得AD=6,∴▱ABCD的面积=AD•BE=6×2=1.故选:A.【题目点拨】本题考查平行四边形的性质,解题的关键是掌握平行四边形的性质.8、B【解题分析】
根据轴对称图形与中心对称图形的概念求解.【题目详解】A、是轴对称图形,也是中心对称图形.故错误;B、不是轴对称图形,是中心对称图形.故正确;C、是轴对称图形,也是中心对称图形.故错误;D、是轴对称图形,也是中心对称图形.故错误.故选B.【题目点拨】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、B【解题分析】
由菱形的性质可得AC⊥BD,BO=DO=4,CO=AO=3,由勾股定理可求CB=5,由菱形的面积公式可求AE的长.【题目详解】解:四边形是菱形,,故选:.【题目点拨】本题菱形的性质,熟练运用菱形的面积公式是本题的关键.10、A【解题分析】
根据垂直定义求出∠CFD=∠AEB=90°,再根据得出,再根据全等三角形的判定定理推出即可.【题目详解】添加的条件是AB=CD;理由如下:∵AE⊥BC,DF⊥BC,∴∠CFD=∠AEB=90°,∵,∴,在Rt△ABE和Rt△DCF中,∴Rt△ABE=R△DCF(HL)所以A选项是正确的.【题目点拨】本题考查了全等三角形的判定定理的应用,能灵活运用全等三角形的判定定理进行推理是解此题的关键.11、C【解题分析】
首先提取公因式a,再利用平方差公式进行二次分解即可.【题目详解】=a(a-1)=,故选:C.【题目点拨】此题考查提公因式法与公式法的综合运用,解题关键在于掌握运算法则.12、B【解题分析】
设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,根据题意可得:现在生产600台所需时间与原计划生产450台机器所需时间相同,据此列方程即可.【题目详解】设原计划平均每天生产x台机器,则实际平均每天生产(x+50)台机器,由题意得:.故选B.【题目点拨】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.二、填空题(每题4分,共24分)13、2.1×10﹣1【解题分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【题目详解】解:小数0.00002l用科学记数法表示为2.1×10-1.
故答案为2.1×10-1.【题目点拨】本题考查了用科学记数法表示较小的数,一般形式为a×,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.14、1【解题分析】
由平行四边形的性质得出AB=CD,AD=BC,OB=OD=BD=5,得出BC+CD=18,证出OE是△BCD的中位线,DE=CD,由三角形中位线定理得出OE=BC,△DOE的周长=OD+OE+DE=OD+(BC+CD),即可得出结果.【题目详解】解:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,OB=OD=BD=5,∵平行四边形ABCD的周长为36,∴BC+CD=18,∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD,∴OE=BC,∴△DOE的周长=OD+OE+DE=OD+(BC+CD)=5+9=1;故答案为:1.【题目点拨】本题考查平行四边形的性质、三角形中位线的性质,熟练运用平行四边形和三角形中位线的性质定理是解题的关键.15、k>﹣1且k≠1.【解题分析】
由关于x的一元二次方程kx2-2x-1=1有两个不相等的实数根,即可得判别式△>1且k≠1,则可求得k的取值范围.【题目详解】解:∵关于x的一元二次方程kx2﹣2x﹣1=1有两个不相等的实数根,∴△=b2﹣4ac=(﹣2)2﹣4×k×(﹣1)=4+4k>1,∴k>﹣1,∵x的一元二次方程kx2﹣2x﹣1=1∴k≠1,∴k的取值范围是:k>﹣1且k≠1.故答案为:k>﹣1且k≠1.【题目点拨】此题考查了一元二次方程根的判别式的应用.此题比较简单,解题的关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>1⇔方程有两个不相等的实数根;(2)△=1⇔方程有两个相等的实数根;(3)△<1⇔方程没有实数根.16、±1【解题分析】试题分析:∵方程x2+kx+9=0有两个相等的实数根,∴△=0,即k2﹣4•1•9=0,解得k=±1.故答案为±1.考点:根的判别式.17、【解题分析】试题解析:过点B作直线AC的垂线交直线AC于点F,如图所示.∵△BCE的面积是△ADE的面积的2倍,E是AB的中点,∴S△ABC=2S△BCE,S△ABD=2S△ADE,∴S△ABC=2S△ABD,且△ABC和△ABD的高均为BF,∴AC=2BD,∴OD=2OC.∵CD=k,∴点A的坐标为(,3),点B的坐标为(-,-),∴AC=3,BD=,∴AB=2AC=6,AF=AC+BD=,∴CD=k=.【题目点拨】本题考查了反比例函数图象上点的坐标特征、三角形的面积公式以及勾股定理.构造直角三角形利用勾股定理巧妙得出k值是解题的关键.18、<k≤2.【解题分析】
直线y=kx+b过点N(0,-2),则b=-2,y=kx-2.当直线y=kx-2的图象过A点时,求得k的值;当直线y=kx-2的图象过B点时,求得k的值;当直线y=kx-2的图象过C点时,求得k的值,最后判断k的取值范围.【题目详解】∵直线y=kx+b过点N(0,-2),∴b=-2,∴y=kx-2.当直线y=kx-2的图象过A点(2,3)时,2k-2=3,k=2;当直线y=kx-2的图象过B点(2,2)时,k-2=2,k=2;当直线y=kx-2的图象过C点(4,2)时,4k-2=2,k=,∴k的取值范围是<k≤2.故答案为<k≤2.【题目点拨】本题主要考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.三、解答题(共78分)19、(1)证明见解析;(2)证明见解析.【解题分析】
(1)利用平行四边形的性质得出BG=DH,进而利用SAS得出△BEG≌△DFH;(2)利用全等三角形的性质得出∠GEF=∠HFB,进而得出答案.【题目详解】(1)∵四边形ABCD是平行四边形,∴AB=CD,AB∥DC,∴∠ABE=∠CDF,∵AG=CH,∴BG=DH,在△BEG和△DFH中,,∴△BEG≌△DFH(SAS);(2)∵△BEG≌△DFH(SAS),∴∠BEG=∠DFH,EG=FH,∴∠GEF=∠HFB,∴GE∥FH,∴四边形GEHF是平行四边形.【题目点拨】此题主要考查了平行四边形的性质以及全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解题关键.20、(1)见解析;(2).【解题分析】
(1)由平行线的性质和角平分线得出∠ADB=∠ABD,证出AD=AB,由AB=BC得出AD=BC,即可得出结论;(2)由菱形的性质得出AC⊥BD,OB=OD,OA=OC=AC=1,在Rt△OCD中,由勾股定理得:OD==2,得出BD=2OD=4,再由直角三角形斜边上的中线性质即可得出结果.【题目详解】(1)证明:,,平分,,,,,,,四边形是平行四边形,又,四边形是菱形;(2)四边形是菱形,,,,在中,由勾股定理得:,,,,,.【题目点拨】本题考查了菱形的判定与性质、平行四边形的判定、等腰三角形的判定、平行线的性质、勾股定理、直角三角形斜边上的中线性质;熟练掌握菱形的判定与性质是解题的关键.21、m=-1【解题分析】
根据一次函数的定义得到方程和不等式,再进行求解即可.【题目详解】解:若关于x的函数y=(m+3)x|m+2|是正比例函数,需满足m+3≠0且|m+2|=1,解得m=-1故m的值为-1.22、(1)A型设备最多购买5台;(2)A型设备至少要购买4台.【解题分析】
(1)设购买A型号的x台,购买B型号的为(10-x)台,根据购买节省能源的新设备的资金不超过110万元.可列出不等式求解.(2)设购买A型号的a台,购买B型号的为(10-a)台,根据每月要求总产量不低于2040吨,可列不等式求解.【题目详解】(1)设购买A型号的x台,购买B型号的为(10﹣x)台,则:12x+10(10﹣x)≤110,解得:x≤5,答:A型设备最多购买5台;(2)设购买A型号的a台,购买B型号的为(10﹣a)台,可得:240a+180(10﹣a)≥2040,解得:a≥4,∴A型设备至少要购买4台.【题目点拨】本题考查了一元一次不等式的应用,解题的关键是根据题意列出的一元一次不等式.23、(1)见解析;(2)图形见解析,点B2、C2的坐标分别为(0,-2),(-2,-1)【解题分析】
(1)先作出点A、B、C关于原点的对称点,A1,B1,C1,顺次连接各点即可;(2)平移△ABC,使点A移动到点A2(0,2),画出平移后的△A2B2C2,由点B2、C2在坐标系中的位置得出各点坐标即可.【题目详解】(1)△ABC关于原点O对称的△A1B1C1如图所示:(2)平移后的△A2B2C2如图所示:点B2、C2的坐标分别为(0,-2),(-2,-1).【题目点拨】本题考查了作图﹣旋转变换,熟知图形旋转的性质是解答此题的关键.24、(1)S=2a+2;(2)正确,理由见解析【解题分析】
(1)过点P作PP⊥x轴,PP⊥y轴,由P为线段AB的中点,可知PP,PP是△AOB的中位线,故OA=2PP,OB=2PP,再由点P是反比例函数y=(x>0)图象上的点,可知S=OA×OB=×2PP×2PP=2PP×PP=2a+2;(2)由点Q为线段MN的中点,可知同(1)可得S=S=2a+2,故可得出OA•OB=OM•ON,即,由相似三角形的判定定理可知△AON∽△MOB,故∠OAN=∠OMB,由此即可得出结论.【题目详解】(1)过点P作PP⊥x轴,PP⊥y
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 家用电器销售合同
- 广州手房买卖合同
- 美团外卖活动策划方案
- 医疗器械公司劳动合同
- 庭院绿化施工合同
- 高效办公工具使用解决方案
- 环保产业技术创新与应用合作协议
- 地产项目土地开发合作合同
- 个人分包劳务分包合同
- 新兴技术交流及应用方案推进工作指引
- 委托办理公证委托书(6篇)
- 康复医学绪论
- 大树修剪专项施工方案
- 人教版七年级历史下册全套课课练及答案解析课件
- 2023年高考全国乙卷语文试卷真题(含答案)
- 汽车保险与理赔PPT全套完整教学课件
- 新苏教版四年级音乐下册教案
- 旅行社运营实务电子课件 2.1 走进旅行社门市
- 红外热成像技术
- 四年级计算题大全(列竖式计算-可直接打印)-
- 春季高考-信息技术试题及答案
评论
0/150
提交评论