吉林省长春市外国语学校2024届八年级数学第二学期期末调研试题含解析_第1页
吉林省长春市外国语学校2024届八年级数学第二学期期末调研试题含解析_第2页
吉林省长春市外国语学校2024届八年级数学第二学期期末调研试题含解析_第3页
吉林省长春市外国语学校2024届八年级数学第二学期期末调研试题含解析_第4页
吉林省长春市外国语学校2024届八年级数学第二学期期末调研试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

吉林省长春市外国语学校2024届八年级数学第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.要使二次根式有意义,则x的取值范围是()A.x<3 B.x≤3 C.x>3 D.x≥32.直角三角形的三边为a﹣b,a,a+b且a、b都为正整数,则三角形其中一边长可能为()A.61 B.71 C.81 D.913.不等式的解集在数轴上表示为()A. B. C. D.4.将下列长度的三根木棒首尾顺次连接,能组成直角三角形的是()A.3,5,6 B.2,3,5 C.5,6,7 D.6,8,105.如图,正方形ABCD的边长为4,P为正方形边上一动点,运动路线是A→D→C→B→A,设P点经过的路程为x,以点A、P、D为顶点的三角形的面积是y.则下列图象能大致反映y与x的函数关系的是()A. B. C. D.6.若一个多边形每一个内角都是135º,则这个多边形的边数是()A.6 B.8 C.10 D.127.若A(x1,y1)、B(x2,y2)、C(x3,y3)是反比例函数y=图象上的点,且x1<x2<0<x3,则y1、y2、y3的大小关系正确的是()A.y3>y1>y2 B.y1>y2>y3C.y2>y1>y3 D.y3>y2>y18.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为()A. B. C. D.9.将一张矩形纸片沿一组对边和的中点连线对折,对折后所得矩形恰好与原矩形相似,若原矩形纸片的边,则的长为()A. B. C. D.210.函数y=2-x+1A.x=3 B.x≤2 C.x<2且x≠3 D.x≤2且x≠311.如图是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用,表示直角三角形的两直角边(),下列四个说法:①,②,③,④.其中说法正确的是()A.①② B.①②③ C.①②④ D.①②③④12.如图,四边形中,,,且,以,,为边向外作正方形,其面积分别为,,.若,,则的值为A.8 B.12 C.24 D.60二、填空题(每题4分,共24分)13.已知数据a1,a2,a3,a4,a5的平均数是m,且a1>a2>a3>a4>a5>0,则数据a1,a2,a3,﹣3,a4,a5的平均数和中位数分别是_____,_____.14.如图,在菱形ABCD中,对角线AC,BD交于点O,AB=5,BD=6,则菱形ABCD的面积是_____.15.某校规定:学生的数学期未总计成须由卷面成绩、研究性学习成绩、平时成绩三部分构成,各部分所占比例如图所示.小明本学期数学学科的卷面成绩、研究性学习成绩、平时成绩得分依次为90分、80分、85分,则小明的数学期末总评成绩为________分.16.一次函数,当时,,则_________.17.如图,含45°角的直角三角板DBC的直角顶点D在∠BAC的角平分线AD上,DF⊥AB于F,DG⊥AC于G,将△DBC沿BC翻转,D的对应点落在E点处,当∠BAC=90°,AB=4,AC=3时,△ACE的面积等于_____.18.如图,矩形ABCD的对角线AC与BD相交点O,AC=8,P、Q分别为AO、AD的中点,则PQ的长度为________.三、解答题(共78分)19.(8分)计算:(1)+﹣(2)2÷5(3)(+3﹣)÷(4)(2﹣3)2﹣(4+3)(4﹣3)20.(8分)如图1,在△ABC中,D是BC边上一点,E是AD的中点,过点A作BC的平行线交CE的延长线于F,且AF=BD,连接BF.(1)求证:点D是线段BC的中点;(2)如图2,若AB=AC=13,AF=BD=5,求四边形AFBD的面积.21.(8分)在一只不透明的口袋里装有只有颜色不同的黑、白两种颜色的球共20个,某学习小组做摸球实验,将球搅匀后从中随机摸出一个球记下颜色,然后把它放回袋中,不断重复,下表是活动进行中的一组统计数据:(1)上表中的a=;(2)“摸到白球”的概率的估计值是(精确到0.1)(3)试估算口袋中黑、白两种颜色的球各有多少个?22.(10分)如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AE=5,OE=3,求线段CE的长.23.(10分)小丽学完统计知识后,随机调查了她所在辖区若干名居民的年龄,并绘制成如下统计图.请根据统计图提供的信息,解答下列问题(1)小丽共调查了名居民的年龄,扇形统计图中a=%,b=%;(2)补全条形统计图;(3)若该辖区0~14岁的居民约有3500人,请估计年龄在60岁以上的居民人数.24.(10分)(1)分解因式:;(2)解方程:25.(12分)如图,菱形ABCD对角线交于点O,BE∥AC,AE∥BD,EO与AB交于点F.(1)试判断四边形AEBO的形状,并说明你的理由;(2)求证:EO=DC.26.已知,利用因式分解求的值.

参考答案一、选择题(每题4分,共48分)1、B【解题分析】分析:根据二次根式有意义的条件回答即可.详解:由有意义,可得3-x≥0,解得:x≤3.故选B.点睛:本题考查了二次根式有意义的条件,解题的关键是知道二次根式有意义,被开方数为非负数.2、C【解题分析】由题可知:(a−b)2+a2=(a+b)2,解之得:a=4b,所以直角三角形三边分别为3b、4b、5b.当b=27时,3b=81.故选C.3、A【解题分析】

先解不等式2x-3≤3得到x≤3,然后利用数轴表示其解集.【题目详解】解:移项得2x≤6,

系数化为1得x≤3,

在数轴上表示为:.

故选:A.【题目点拨】本题考查了在数轴上表示不等式的解集,解一元一次不等式,解题关键在于运用数轴表示不等式的解集比较直观,这也是数形结合思想的应用.4、D【解题分析】

判断是否为直角三角形,只要验证两小边的平方和是否等于最长边的平方即可.【题目详解】A.32+52=34≠62,故不能组成直角三角形,错误;B.22+32≠52,故不能组成直角三角形,错误;C.52+62≠72,故不能组成直角三角形,错误;D.62+82=100=102,故能组成直角三角形,正确.故选D.【题目点拨】本题考查了勾股定理的逆定理的应用.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.5、B【解题分析】通过几个特殊点就大致知道图像了,P点在AD段时面积为零,在DC段先升,在CB段因为底和高不变所以面积不变,在BA段下降,故选B6、B【解题分析】试题分析:设多边形的边数为n,则=135,解得:n=8考点:多边形的内角.7、A【解题分析】

先根据反比例函数y=的系数1>0判断出函数图象在一、三象限,在每个象限内,y随x的增大而减小,再根据x1<x1<0<x3,判断出y1、y1、y3的大小.【题目详解】解:∵反比例函数y=的系数3>0,∴该反比例函数的图象如图所示,该图象在第一、三象限,在每个象限内,y随x的增大而减小,又∵x1<x1<0<x3,,∴y3>y1>y1.故选A.8、C【解题分析】

由折叠的性质可得DE=BE,设AE=xcm,则BE=DE=(9-x)cm,在Rt中,由勾股定理得:32+x2=(9-x)2解得:x=4,∴AE=4cm,∴S△ABE=×4×3=6(cm2),故选C.9、C【解题分析】

根据相似多边形对应边的比相等,设出原来矩形的长,就可得到一个方程,解方程即可求得.【题目详解】解:根据条件可知:矩形AEFB∽矩形ABCD,∴,设AD=BC=x,AB=1,则AE=x.则,即:x2=1.∴x=或﹣(舍去).故选:C.【题目点拨】本题考查了相似多边形的性质,根据相似形的对应边的比相等,把几何问题转化为方程问题,正确分清对应边,以及正确解方程是解决本题的关键.10、B【解题分析】

根据二次根式的性质和分式的意义,被开方数大于或等于0,分母不等于0,可以求出x的范围.【题目详解】根据题意得:2-x≥0x-3≠0解得:x≤2故选B【题目点拨】本题考查求函数的自变量的取值范围函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数(2)当函数表达式是分式时,考虑分式的分母不能为0(3)当函数表达式是二次根式时,被开方数非负.11、B【解题分析】

可设大正方形边长为a,小正方形边长为b,所以据题意可得a2=49,b2=4;根据直角三角形勾股定理得a2=x2+y2,所以x2+y2=49,式①正确;因为是四个全等三角形,所以有x=y+2,所以x-y=2,式②正确;根据三角形面积公式可得S△=xy/2,而大正方形的面积也等于四个三角形面积加上小正方形的面积,所以,化简得2xy+4=49,式③正确;而据式④和式②得2x=11,x=5.5,y=3.5,将x,y代入式①或③都不正确,因而式④不正确.综上所述,这一题的正确答案为B.12、B【解题分析】

过作交于,则,依据四边形是平行四边形,即可得出,,再根据勾股定理,即可得到,进而得到的值.【题目详解】如图,过作交于,则,,四边形是平行四边形,,,,,,,,,,即,,故选.【题目点拨】本题考查了平行四边形的判定与性质,勾股定理,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.二、填空题(每题4分,共24分)13、,【解题分析】

根据五个数的平均数为m,可以表示五个数的和为5m,后来加上一个数﹣3,那么六个数的和为5m﹣3,因此六个数的平均数为(5m﹣3)÷6,将六个数从小到大排列后,处在第3、4位的两个数的平均数为(a4+a3)÷1,因此中位数是(a4+a3)÷1.【题目详解】a1,a1,a3,a4,a5的平均数是m,则a1+a1+a3+a4+a5=5m,数据a1,a1,a3,﹣3,a4,a5的平均数为(a1+a1+a3﹣3+a4+a5)÷6=,数据a1,a1,a3,﹣3,a4,a5按照从小到大排列为:﹣3,a5,a4,a3,a1,a1,处在第3、4位的数据的平均数为,故答案为:,.【题目点拨】考查平均数、中位数的意义及计算方法,解题关键在于灵活应用平均数的逆运算.14、24【解题分析】

根据菱形的对角线互相垂直,利用勾股定理列式求出OA,再根据菱形的对角线互相平分求出AC,然后利用菱形的面积等于对角线乘积的一半列式进行计算即可得解.【题目详解】∵四边形ABCD是菱形,∴OB=OD=3,OA=OC,AC⊥BD,在Rt△AOB中,∠AOB=90°,根据勾股定理,得:,∴AC=2OA=8,∴S菱形ABCD=×AC×BD=×6×8=24.故答案为:24.【题目点拨】此题考查菱形的性质,勾股定理求线段,菱形的面积有两种求法:①底乘以高;②对角线乘积的一半,解题中根据题中的已知条件选择合适的方法.15、1【解题分析】

按统计图中各部分所占比例算出小明的期末数学总评成绩即可.【题目详解】解:小明的期末数学总评成绩=90×60%+80×20%+85×20%=1(分).故答案为1.16、3或1【解题分析】

分k>0和k<0两种情况,结合一次函数的增减性,可得到关于k、b的方程组,求解即可.【题目详解】解:当k>0时,此函数y随x增大而增大,∵当1≤x≤4时,3≤y≤1,∴当x=1时,y=3;当x=4时,y=1,∴,解得;当k<0时,此函数y随x增大而减小,∵当1≤x≤4时,3≤y≤1,∴当x=1时,y=1;当x=4时,y=3,∴,解得:,∴k+b=3或1.故答案为:3或1.【题目点拨】本题考查的是一次函数的性质,在解答此题时要注意进行分类讨论.17、【解题分析】

根据勾股定理得到BC=5,由折叠的性质得到△BCE是等腰直角三角形,过E作EH⊥AC交CA的延长线于H,根据勾股定理得到EH=,于是得到结论【题目详解】∵在△ABC中,∠BAC=90°,AB=4,AC=3,∴BC=5,∵△BCE是△DBC沿BC翻转得到得∴△BCE是等腰直角三角形,∴∠BEC=90°,∠BCE=45°,CE=,BC=过E作EH⊥AC交CA的延长线于H,易证△CEH≌△DCG,△DBF≌△DCG∴EH=CG,BF=CG,∵四边形AFDG和四边形BECD是正方形∴AF=AG,设BF=CG=x,则AF=4-x,AG=3+x∴4-x=3+x,∴x=∴EH=CG=∴△ACE的面积=××3=,故答案为:【题目点拨】此题考查折叠问题和勾股定理,等腰直角三角形的性质,解题关键在于做辅助线18、1【解题分析】

根据矩形的性质可得AC=BD=8,BO=DO=12BD=4,再根据三角形中位线定理可得PQ=12【题目详解】∵四边形ABCD是矩形,∴AC=BD=8,BO=DO=12BD∴OD=12BD=4∵点P、Q是AO,AD的中点,∴PQ是△AOD的中位线,∴PQ=12DO=1故答案为:1.【题目点拨】主要考查了矩形的性质,以及三角形中位线定理,关键是掌握矩形对角线相等且互相平分.三、解答题(共78分)19、(1)(2)(3)(4)49-12【解题分析】

(1)先把各二次根式化为最简二次根式,然后合并即可;(2)先根据二次根式的乘除法则运算,然后化简后合并即可;(3)原式利用二次根式的除法法则计算即可得到结果;(4)原式利用完全平方公式和平方差公式变形,计算即可得到结果.【题目详解】(1)+﹣,=,=;(2)2÷5,=,=,=;(3)(+3﹣)÷,=,=,=;(4)(2﹣3)2﹣(4+3)(4﹣3),=,=49-.【题目点拨】此题考查了二次根式的运算,熟练掌握运算法则是解本题的关键.20、(1)证明见解析(2)1【解题分析】分析:(1)利用“AAS”可证明△EAF≌△EDC,则AF=DC,从而得到BD=DC;(2)先证明四边形AFBD是平行四边形,再利用等腰三角形的性质证明AD⊥BC,则四边形AFBD为矩形,然后计算出AD后再计算四边形AFBD的面积.详解:(1)证明:如图1,∵点E是AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DCE,∠FAE=∠CDE.在△EAF和△EDC,∴△EAF≌△EDC,∴AF=DC,∵AF=BD,∴BD=DC,即D是BC的中点;(2)解:如图2,∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,又由(1)可知D是BC的中点,∴AD⊥BC,在Rt△ABD中,AD==12,∴矩形AFBD的面积=BD•AD=1.点睛:本题考查了全等三角形的判定与性质:在判定三角形全都时,关键是选择恰当的判定条件,在应用全等三角形的判定时,要注意三角形间的公共边和公共角,必要时添加适当的辅助线构造三角形.21、(1)0.58;(2)0.6;(3)白球12(个),黑球8(个)【解题分析】

(1)利用频率=频数÷样本容量直接求解即可;(2)根据统计数据,当n很大时,摸到白球的频率接近0.60;(3)根据利用频率估计概率,可估计摸到白球的概率为0.60,然后利用概率公式计算白球的个数.【题目详解】(1)a==0.58,故答案为:0.58;(2)随着实验次数的增加“摸到白球”的频率趋向于0.60,所以其概率的估计值是0.60,故答案为:0.60;(3)由(2)摸到白球的概率估计值为0.60,所以可估计口袋中白种颜色的球的个数=20×0.6=12(个),黑球20−12=8(个).答:黑球8个,白球12个.【题目点拨】本题考查利用频率估计概率,事件A发生的频率等于事件A出现的次数除以实验总次数;在实验次数非常大时,事件A发生的频率约等于事件发生的概率,本题可据此作答;对于(3)可直接用概率公式.22、(1)证明见解析;(2).【解题分析】

(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;

(2)四边形ABCD是菱形可得OA=OC,由直角三角形斜边中线等于斜边一半可知,在Rt△AEC中,AC=2OE=6,再由勾股定理求出CE..【题目详解】解:(1)∵AB∥CD,

∴∠OAB=∠DCA,

∵AC为∠DAB的平分线,

∴∠OAB=∠DAC,

∴∠DCA=∠DAC,

∴CD=AD=AB,

∵AB∥CD,

∴四边形ABCD是平行四边形,

∵AD=AB,

∴▱ABCD是菱形;

(2)∵四边形ABCD是菱形,

∴OA=OC,

∵CE⊥AB,OE=3,

∴AC=2OE=6,

在Rt△AEC中,∴CE===.【题目点拨】此题主要考查了菱形的判定和性质,直角三角形性质,勾股定理,由直角三角形斜边中线等于斜边一半判断出AC=2OE是解本题的关键.23、(1)500,20%,12%;(2)110,图见解析;(3)2100人【解题分析】

(1)由题意根据“15~40”的百分比和频数可求总数,进而求出a、b的值;(2)根据题意利用总数和百分比求出频数再补全条形图即可;(3)根据题意用样本估计总体,进而得出年龄在60岁以上的居民人数即可.【题目详解】解:(1)解:(1)根据“15到40”的百分比为46%,频数为230人,可求总数为230÷46%

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论