2024届甘肃省天水市秦安县数学八下期末综合测试模拟试题含解析_第1页
2024届甘肃省天水市秦安县数学八下期末综合测试模拟试题含解析_第2页
2024届甘肃省天水市秦安县数学八下期末综合测试模拟试题含解析_第3页
2024届甘肃省天水市秦安县数学八下期末综合测试模拟试题含解析_第4页
2024届甘肃省天水市秦安县数学八下期末综合测试模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届甘肃省天水市秦安县数学八下期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.小明为画一个零件的轴截面,以该轴截面底边所在的直线为x轴,对称轴为y轴,建立如图所示的平面直角坐标系.若坐标轴的单位长度取1mm,则图中转折点的坐标表示正确的是A.(5,30) B.(8,10) C.(9,10) D.(10,10)2.在平面直角坐标系中,点(a-2,a)在第三象限内,则a的取值范围是()A. B. C. D.3.如图,在正方形中,分别以点,为圆心,长为半径画弧,两弧相交于点,连接,得到,则与正方形的面积比为()A.1:2 B.1:3 C.1:4 D.4.解不等式,解题依据错误的是()解:①去分母,得5(x+2)<3(2x﹣1)②去括号,得5x+10<6x﹣3③移项,得5x﹣6x<﹣3﹣10④合并同类项,得﹣x<﹣13⑤系数化1,得x>13A.②去括号法则 B.③不等式的基本性质1C.④合并同类项法则 D.⑤不等式的基本性质25.如图,中,,AD平分,点E为AC的中点,连接DE,若的周长为26,则BC的长为A.20 B.16 C.10 D.86.点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为()A.点E B.点FC.点H D.点G7.以下列各组数为边长首尾相连,能构成直角三角形的一组是()A.4,5,6 B.1,3,2 C.5,12,15 D.6,8,148.在一次中学生田径运动会上,参加跳远的名运动员的成绩如下表所示:成绩(米)人数则这名运动员成绩的中位数、众数分别是()A. B. C., D.9.如图,已知矩形中,与相交于,平分交于,,则的度数为()A. B. C. D.10.已知菱形的边长等于2cm,菱形的一条对角线也是长2cm,则另一条对角线长是()A.4cm B.2cm C.cm D.3cm11.如图,点A,B,C,D的坐标分别是(1,7),(1,1),(4,1),(6,1),以C,D,E为顶点的三角形与△ABC相似,则点E的坐标不可能是A.(6,0) B.(6,3) C.(6,5) D.(4,2)12.若一组数据,0,2,4,的极差为7,则的值是().A. B.6 C.7 D.6或二、填空题(每题4分,共24分)13.实数a,b在数轴上对应点的位置如图所示,化简|b|+=______.14.如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为.15.已知,如图,△ABC中,E为AB的中点,DC∥AB,且DC=AB,请对△ABC添加一个条件:_____,使得四边形BCDE成为菱形.16.如图,在中,,,,点,都在边上,的平分线垂直于,垂足为,的平分线垂直于,垂足为,则的长__________.17.如图,矩形ABCD的两条对角线相交于点O,∠AOB=60°,AB=2,则AC=

_________18.将一元二次方程通过配方转化成的形式(,为常数),则=_________,=_________.三、解答题(共78分)19.(8分)下图反映的过程是小明从家去菜地浇水,又去玉米地锄草,然后回家.其中x表示时间,y表示小明离他家的距离.根据图象回答下列问题:①菜地离小明家多远?小明走到菜地用了多少时间?②小明给菜地浇水用了多少时间?③玉米地离菜地、小明家多远?小明从玉米地走回家平均速度是多少?20.(8分)学校准备五一组织老师去隆中参加诸葛亮文化节,现有甲、乙两家旅行社表示对老师优惠,设参加文化节的老师有x人,甲、乙两家旅行社实际收费为y1、y2,且它们的函数图象如图所示,根据图象信息,请你回答下列问题:(1)当参加老师的人数为多少时,两家旅行社收费相同?(2)求出y1、y2关于x的函数关系式?(3)如果共有50人参加时,选择哪家旅行社合算?21.(8分)由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(−2,1),B(−4,5),C(−5,2).(1)请画出△ABC关于y轴对称的△ABC;(2)画出△ABC关于原点O成中心对称的△ABC;(3)请你判断△AAA与△CCC的相似比;若不相似,请直接写出△AAA的面积.22.(10分)如图,四边形是正方形,点是边上的任意一点,于点,,且交于点,求证:(1)(2)23.(10分)如图1,BD是正方形ABCD的对角线,BC=4,点H是AD边上的一动点,连接CH,作,使得HE=CH,连接AE。(1)求证:;(2)如图2,过点E作EF//AD交对角线BD于点F,试探究:在点H的运动过程中,EF的长度是否为一个定值;如果是,请求出EF的长度。24.(10分)下表是小华同学一个学期数学成绩的记录.根据表格提供的信息,回答下列的问题:考试类别平时考试期中考试期末考试第一单元第二单元第三单元第四单元成绩(分)857890919094(1)小明6次成绩的众数是,中位数是;(2)求该同学这个同学这一学期平时成绩的平均数;(3)总评成绩权重规定如下:平时成绩占20%,期中成绩占30%,期末成绩占50%,请计算出小华同学这一个学期的总评成绩是多少分?25.(12分)八年级(1)班同学为了解某小区家庭月均用水情况,随机调査了该小区部分家庭,并将调查数据整理成如下两幅不完整的统计图表:月均用水量x(t)频数(户)频率0<x≤560.125<x≤10m0.2410<x≤15160.3215<x≤20100.2020<x≤254n25<x≤3020.04请根据以上信息,解答以下问题:(1)直接写出频数分布表中的m、n的值并把频数直方图补充完整;(2)求出该班调查的家庭总户数是多少?(3)求该小区用水量不超过15的家庭的频率.26.如图,点O为等边三角形ABC内一点,连接OA,OB,OC,将线段BO绕点B顺时针旋转60°到BM,连接CM,OM.(1)求证:AO=CM;(2)若OA=8,OC=6,OB=10,判断△OMC的形状并证明.

参考答案一、选择题(每题4分,共48分)1、C【解题分析】

先求得点P的横坐标,结合图形中相关线段的和差关系求得点P的纵坐标.【题目详解】如图,过点C作CD⊥y轴于D,∴BD=5,CD=50÷2-16=9,OA=OD-AD=40-30=10,∴P(9,10);故选C.【题目点拨】此题考查了坐标确定位置,根据题意确定出DC=9,AO=10是解本题的关键.2、B【解题分析】

利用第三象限点的坐标特征得到,然后解不等式组即可.【题目详解】∵点P(a﹣2,a)在第三象限内,∴,∴a<1.故选B.【题目点拨】本题考查了解一元一次不等式组:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.也考查了第三象限点的坐标特征.3、C【解题分析】

由作图可得知△BEC是等边三角形,可求出∠ABE=30°,进而可求出△ABE边AB上的高,再根据三角形和正方形的面积公式求出它们的面积比即可.【题目详解】根据作图知,BE=CE=BC,∴△BEC是等边三角形,∴∠EBC=60°,∵四边形ABCD是正方形,∴∠ABC=90°,AB=BC,∴∠ABE=∠ABC-∠EBC=90°-60°=30°,设AB=BC=a,过点E作EF⊥AB于点F,如图,则EF=BE=a,∴.故选C.【题目点拨】此题主要考查了等边三角形的判定以及正方形的性质,熟练掌握有关性质是解题的关键.4、D【解题分析】

根据题目中的解答步骤可以写出各步的依据,从而可以解答本题.【题目详解】解:由题目中的解答步骤可知,②去括号法则,故选项A正确,③不等式的基本性质1,故选项B正确,④合并同类项法则,故选项C正确,⑤不等式的基本性质3,故选项D错误,故选D.【题目点拨】本题考查解一元一次不等式,解答本题的关键是明确解一元一次不等式的方法.5、A【解题分析】

根据等腰三角形的性质可得,再根据在直角三角形中,斜边上的中线等于斜边的一半可得答案.【题目详解】,AD平分,,,点E为AC的中点,.的周长为26,,.故选A.【题目点拨】此题主要考查了等腰三角形的性质,以及直角三角形的性质,关键是掌握在直角三角形中,斜边上的中线等于斜边的一半.6、B【解题分析】

根据位似图形对应点连线过位似中心判断即可.【题目详解】解:点A、B、C、D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为点F,

故选:B.【题目点拨】此题考查位似变换,解题关键是弄清位似中心的定义.7、B【解题分析】

如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.【题目详解】解:A、42B、12C、52D、62故选择:B.【题目点拨】本题主要考查了勾股定理的逆定理的运用,解题时注意:要判断一个角是不是直角,先要构造出三角形,然后知道三条边的大小,用较小的两条边的平方和与最大的边的平方比较,如果相等,则三角形为直角三角形;否则不是.8、D【解题分析】

根据中位数、众数的定义即可解决问题.【题目详解】解:这些运动员成绩的中位数、众数分别是4.70,4.1.故选:D.【题目点拨】本题考查中位数、众数的定义,解题的关键是记住中位数、众数的定义,属于中考基础题.9、B【解题分析】

因为DE平分∠ADC,可证得△ECD为等腰直角三角形,得EC=CD,因为∠BDE=15°,可求得∠CDO=60°,易证△CDO为等边三角形,等量代换可得CE=CO,即∠COE=∠CEO,而∠ECO=30°,利用三角形内角和为180°,即可求得∠COE=75°.【题目详解】解:∵四边形ABCD为矩形,且DE平分∠ADC,∴∠CDE=∠CED=45,即△ECD为等腰直角三角形,∴CE=CD,∵∠BDE=15°,∴∠CDO=45°+15°=60°,∵OD=OC,∴△CDO为等边三角形,即OC=OD=CD,∴CE=OC,∴∠COE=∠CEO,而∠OCE=90°-60°=30°,∴∠COE=∠CEO==75°.故选B.【题目点拨】本题考查三角形与矩形的综合,难度一般,熟练掌握矩形的性质是顺利解题的关键.10、B【解题分析】

根据菱形的对角线和一边长组成一个直角三角形的性质,再由勾股定理得出另一条对角线的长即可.【题目详解】解:因为菱形的对角线互相垂直平分,∴另一条对角线的一半长=,则另一条对角线长是2cm.故选B.【题目点拨】本题考查菱形的基本性质:菱形的对角线互相垂直平分,以及综合利用勾股定理.11、B【解题分析】试题分析:△ABC中,∠ABC=90°,AB=6,BC=3,AB:BC=1.A、当点E的坐标为(6,0)时,∠CDE=90°,CD=1,DE=1,则AB:BC=CD:DE,△CDE∽△ABC,故本选项不符合题意;B、当点E的坐标为(6,3)时,∠CDE=90°,CD=1,DE=1,则AB:BC≠CD:DE,△CDE与△ABC不相似,故本选项符合题意;C、当点E的坐标为(6,5)时,∠CDE=90°,CD=1,DE=4,则AB:BC=DE:CD,△EDC∽△ABC,故本选项不符合题意;D、当点E的坐标为(4,1)时,∠ECD=90°,CD=1,CE=1,则AB:BC=CD:CE,△DCE∽△ABC,故本选项不符合题意.故选B.12、D【解题分析】

解:根据极差的计算法则可得:x-(-1)=7或4-x=7,解得:x=6或x=-3.故选D二、填空题(每题4分,共24分)13、﹣a【解题分析】

根据各点在数轴上的位置判断出a、b的符号及绝对值的大小,再根据有理数的加法法则和二次根式的性质,把原式进行化简即可.【题目详解】解:由数轴可知a<0<b,且|a|>|b|,则a+b<0,∴原式=b+|a+b|=b﹣(a+b)=b﹣a﹣b=﹣a,故答案为﹣a.【题目点拨】本题考查的是实数与数轴,二次根式的性质,以及有理数的加法法则,熟知实数与数轴上各点是一一对应关系及绝对值性质是解答此题的关键.14、1.【解题分析】∵ABCD的周长为33,∴2(BC+CD)=33,则BC+CD=2.∵四边形ABCD是平行四边形,对角线AC,BD相交于点O,BD=12,∴OD=OB=BD=3.又∵点E是CD的中点,∴OE是△BCD的中位线,DE=CD.∴OE=BC.∴△DOE的周长="OD+OE+DE="OD+(BC+CD)=3+9=1,即△DOE的周长为1.15、AB=2BC.【解题分析】

先由已知条件得出CD=BE,证出四边形BCDE是平行四边形,再证出BE=BC,根据邻边相等的平行四边形是菱形可得四边形BCDE是菱形.【题目详解】解:添加一个条件:AB=2BC,可使得四边形BCDE成为菱形.理由如下:∵DC=AB,E为AB的中点,∴CD=BE=AE.又∵DC∥AB,∴四边形BCDE是平行四边形,∵AB=2BC,∴BE=BC,∴四边形BCDE是菱形.故答案为:AB=2BC.【题目点拨】本题考查了菱形的判定,平行四边形的判定;熟记平行四边形和菱形的判定方法是解决问题的关键.16、1【解题分析】

证明△ABQ≌△EBQ,根据全等三角形的性质得到BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,根据三角形中位线定理计算即可.【题目详解】解:在△ABQ和△EBQ中,,∴△ABQ≌△EBQ(ASA),∴BE=AB=5,AQ=QE,同理可求CD=AC=7,AP=PD,∴DE=CD-CE=CD-(BC-BE)=2,∵AP=PD,AQ=QE,∴PQ=DE=1,故答案为:1.【题目点拨】本题考查的是三角形中位线定理、全等三角形的判定和性质,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.17、1【解题分析】解:∵在矩形ABCD中,AO=AC,BO=BD,AC=BD,∴AO=BO.又∵∠AOB=60°,∴△AOB为等边三角形,∴AC=2AB=1.18、43【解题分析】

依据配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方求解可得.【题目详解】,,则,即,,.故答案为:(1);(2).【题目点拨】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.三、解答题(共78分)19、①菜地离小明家1.1千米,小明走到菜地用了15分钟;②小明给菜地浇水用了10分钟;③玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是0.08千米/分钟.【解题分析】

①根据函数图象可以直接写出菜地离小明家多远,小明走到菜地用了多少时间;②根据函数图象中的数据可以得到小明给菜地浇水用了多少时间;③根据函数图象中的数据可以得到玉米地离菜地、小明家多远,小明从玉米地走回家平均速度是多少.【题目详解】①由图象可得,菜地离小明家1.1千米,小明走到菜地用了15分钟;②25-15=10(分钟),即小明给菜地浇水用了10分钟;③2-1.1=0.9(千米)玉米地离菜地、小明家的距离分别为0.9千米,2千米,小明从玉米地走回家平均速度是2÷(80-55)=0.08千米/分钟.【题目点拨】本题考查函数图象,解答本题的关键是明确题意,利用数形结合的思想解答.20、(1)当参加老师的人数为30时,两家旅行社收费相同;(2)y2=40x+600;(3)如果共有50人参加时,选择乙家旅行社合算,理由见解析【解题分析】

(1)根据函数图象和图象中的数据可以得到当参加老师的人数为多少时,两家旅行社收费相同;(2)根据函数图象中的数据可以求得y1、y2关于x的函数关系式;(3)根据函数图象可以得到如果共有50人参加时,选择哪家旅行社合算.【题目详解】解:(1)由图象可得,当参加老师的人数为30时,两家旅行社收费相同;(2)设y1关于x的函数关系式是y1=ax,30a=1800,得a=60,即y1关于x的函数关系式是y1=60x;设y2关于x的函数关系式是y2=kx+b,,得,即y2关于x的函数关系式是y2=40x+600;(3)由图象可得,当x>50时,乙旅行社比较合算,∴如果共有50人参加时,选择乙家旅行社合算.【题目点拨】本题考查一次函数的应用、方案选择问题,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.21、(1)见解析;(2)见解析;(3)4.【解题分析】

(1)利用关于y轴对称点的性质得出对应点位置求出即可;(2)利用关于原点对称点的性质得出对应点坐标进而求出即可;(3)利用相似三角形的判定方法得出即可,再利用三角形面积求法得出答案.【题目详解】(1)如图所示:△ABC,即为所求;(2)如图所示:△ABC,即为所求;(3)∵,∴△AAA与△CCC不相似,S=×2×4=4.【题目点拨】此题考查作图-旋转变换,作图-轴对称变换,相似三角形的判定,解题关键在于掌握作图法则.22、(1)见详解;(2)见详解.【解题分析】

(1)证明△AED≌△BFA即可说明DE=AF;(2)由△AED≌△BFA可得AE=BF,又AFAE=EF,所以结论可证.【题目详解】证明:(1)∵四边形ABCD是正方形,

∴AD=AB,∠DAE+∠BAF=90°.

∵∠ABF+∠BAF=90°,

∴∠DAE=∠ABF.

又∠AED=∠BFA.

∴△AED≌△BFA(AAS).

∴DE=AF;

(2)∵△AED≌△BFA,

∴AE=BF.

∵AF-AE=EF,

∴AF-BF=EF.【题目点拨】本题主要考查了正方形的性质、全等三角形的判定和性质,解决此类问题一般是通过三角形的全等转化线段.23、(1)见解析(2)EF为定值4【解题分析】

(1)根据CH⊥HE与正方形的内角为90°即可证明;(2)连接FH,作EM⊥AG延长线,可证明四边形EFHM为矩形,再得到EF=HM=DC即可求解.【题目详解】(1)∵CH⊥HE∴∠CHD+∠AHE=90°,又∠DCH+∠CHD=90°,∴(2)连接FH,作EM⊥AG延长线,∵EF//AD,FH⊥DA,∴四边形EFHM为矩形∴EF=HM∵CH=HE,,又∠CDH=∠HME=90°,∴△CDH≌△HME∴HM=CD,故EF=CD=4为定值.【题目点拨】此题主要考查正方形的判定与性质,解题的关键是根据题意作出辅助线进行求解.24、(1)90分;90分;(2)86分;(3)91.2分.【解题分析】

(1)根据众数和中位数的定义计算即可;(2)根据平均数的定义计算即可;(3)根据加权平均数公式计算即可.【题目详解】解:(1)将小明6次成绩从小到大重新排列为:78、85、90、90、91、94,所以小明6次成绩的众数是90分、中位数为=90分,故答案为90分、90分;(2)该同学这个同学这一学期平时成绩的平均数为=86分;(3)小华同学这一个学期的总评成绩是86×20%+90×30%+94×50%=91.2(分).【题目点拨】本题考查平均数、中位数、加权平均数等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.25、(1)m=12,n=0.08;(2)50

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论