在语言中体味数学之美_第1页
在语言中体味数学之美_第2页
在语言中体味数学之美_第3页
在语言中体味数学之美_第4页
在语言中体味数学之美_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第四章在语言中体味数学之美数学美是一种真实的美,是反映客观世界并能动地改造客观世界的科学美。数学美不仅有表现的形式美,而且有内容美与严谨美;不仅有具体的公式、定理美,而且有结构美与整体美;不仅有语言精巧美,而且有方法美与思路美;不仅有逻辑抽象美,而且有创造美与应用美。在数学教学中,我们应积极创设机会,让学生走近数学语言,体会数学语言给我们带来的数学之美;营造氛围,让学生走进数学语言,学习用数学语言表达。一、在阅读书面文字时感受数学的概括美。叶圣陶先生很强调阅读,称其为“美读”。在数学教学中,我们同样要重视引导学生阅读,包括读概念、定律、法则、题目等,要让学生通过阅读时的语气选择、语速变化、语调起伏、语音高低,理解文字所要表达的意思,感受数学语言带来的精确、简练、概括之美。例如,教学“周长”的概念,通过观察、比较、归纳后,揭示了周长的概念:“围成一个图形的所有边长的总和,叫做这个图形的周长。”先让学生各自初读,然后找出关键词;再以小组形式进行研读,讨论每个人找出的关键词是否合理;最后全班进行品读,让学生抓住“围成”、“所有”、“总和”等词语,生动地、有感情地朗读,在不知不觉中,在轻松愉悦的气氛中,学生自然地接受、掌握了周长的概念,体会数学语言意蕴美的同时感受到数学概念中的美。再如,教学《用字母表示数》中的简写规则:“数和字母相乘a×4=4·a=4a;1和字母相乘1×x=x;字母和字母相乘a×b=a·b=ab;两个相同字母相乘a×a=a·a=a2,a2读作a的平方。”通过学生的自主阅读和交流汇报,找出这段话中值得注意的地方,获取有用的数学信息,这样的阅读对学生来说印象深刻,同时又能在数学语言中感受到数学的概括之美。二、在倾听教师语言时体会数学的精致美。作为一名数学教师,应该清楚地认识到,掌握审美化教学语言艺术,是教学取得成功的一个重要条件,课堂上一句句精心设计的、闪耀着智慧火花、透露着美感的数学语言,能把模糊的事理讲清楚,能把枯燥无味的数学内容讲生动,能把静态的现象讲活起来,学生在倾听之后会主动地追问和探索,使学生的思维处于活跃状态,从而大大提高学习效率。1、教师语言的科学性。数学是一门严密、精确的科学,数学语言表述必须严谨、科学,尤其是小学阶段,学生正在打基础,正在初步感受数学美,教学中对各种数学概念以及逻辑关系的表达要求就更高。一方面,教师在引入概念时要讲究科学美,一般来说,数学教材上的概念表述都经过了千锤百炼,反复推敲,是权威和科学的。在引入新概念时,可以先举日常生活中的例子激发学生的兴趣,形成感性认识,但最后必须按照大纲要求进行严密的逻辑推导,推出新的结论,引入新的知识点,并对新的术语进行准确表述。另一方面,教师语言要规范、标准。教师不同于其他行业人员,说的每一句话在学生心中都具有权威性,换句话说,教师的语言能使学生直接而快速地感受到学科魅力。尤其是数学语言,要发音准确、吐字清晰、措辞精当。如“除以”和“除”不能混为一谈;“39是13的倍数”不能说成“39是倍数”等。教师还要有足够的敏感性,发现学生表述中概念模糊或者发音含糊,都要立即纠正。2、教师语言的引导性。在课堂教学中,教师既要保证核心内容表述上的严谨性,说话又要富有启发性,引导学生进行发散性思考,让学生一步步接近数学所带来的美感。如,在《分数的初步认识》这节课中,学生不能准确地说好“把谁平均分了,平均分成了几份,谁是谁的几分之一。”要说好这句话,首先要建立在理解的基础上,还要有正确的说话思路,这时,教师就要适当地给予启发和引导,让学生一步一步地完整地表达出来:先说“把谁平均分了”,再说“平均分成了几份”,然后说“谁是谁的几分之一”,最后让学生把这句话连起来。再如,“18÷3”这道算式,教师引导性地提出:“把18平均分成3份,每份是多少?”以及“18里含有几个3?”两种说法之后,提问学生还可以有哪些说法,学生在教师的引导下踊跃发言,提出“18除以3得多少?3的多少倍是18?被除数是18,除数是3,商是多少?两个因数的积是18,其中一个因数是3,另一个因数是多少?”等各种说法。这样由浅入深,循序渐进,学生一步一步地完整地表达了出来,感受到教师引导性语言中的逻辑美。又如,教学《一位数除两位数》时,按照以下六步,引导学生从具体实例中有条理地归纳出计算法则:①分一分,把2根小棒平均分成2份,每份是几根?把4捆小棒(每捆10根)平均分成2份,每份是几根?上面两部分小棒合起来共是多少根?42根小棒(4捆加2根)平均分成2份,结果怎样?②刚才我们是怎样分42根小棒的?会列算式吗?这是一道一位数除两位数的计算,用竖式又应该怎样算呢?③谁能根据分小棒的过程说出42÷2的计算方法?④商十位上的“2”是怎样得来的?这个“2”为什么要写在十位上?个位上为什么是“1”?谁能完整地说出计算过程?⑤把42÷2依次改为36÷3、88÷4、÷2、88÷8等,让学生随着题目的变化进行完整的试算练习。⑥想一想,上面几题我们都是怎样算的?一个数除两位数,先除位上的数,商就写在,再除,商。教学中,通过教师富有逻辑性地语言引导,教给学生正确的思维方法,逐步让学生从一些具体的数学事实、数学现象中把握住事物的本质特征,总结出数学的基本原理和规律,从而使其认识水平从感性上升到理性,循序渐进地获得数学之美。3、教师语言的情感性。“请动于中而言溢于表,才能打动学生的心,使学生产生强烈的共鸣,受到强烈的感染”,这是指教师的语言要亲切甜美,充满感情色彩,尤其是小学教师,教学语言只有“甜美”才有儿童情趣,才会符合儿童感知觉的特征,才能在无形中陶冶学生的情操、塑造学生的灵魂。教师的语言甜美,既能放松学生的心理,又能激发学生的求知欲,能让学生在轻松、愉快、舒畅、自然的情绪中,集中精力、开拓思路、认真学习。因此,教师一个鼓励的眼神,一句甜美的语言,会让学生心里甜滋滋的,学生会对你充满敬意,喜欢你以至于喜欢你所教的学科。例如,平时经常在课堂上听到的“你真聪明”、“你真棒”等表扬的语言对学生是一种鼓励,哪怕是带有批评性质的语言也应该委婉一点,如面对老师的提问,被请起来的学生没有回答,教师这样说:“刚才这位同学可能正在默默地思考,准备考虑成熟一些再说,现在请别的同学先回答吧!”这时,回答不出的孩子就会自觉地觉得自己不对,老师不但没有批评反而给予肯定,心里很感激老师,学习自然会更专心。俗话说“良言一句三冬暖,恶语伤人六月寒”,因此,教师说话要“甜美”一点,因为亲切而充满关爱的语言,不但使学生喜欢和乐意接受,而且能塑造学生美好的心灵,进而为学生领悟数学美、欣赏数学美打下坚实的情感基础,提高教学效果。三、在学生语言表述中感受数学的逻辑美。对于一个小学生来说,语言的逐步掌握和不断发展,会日益丰富思维内容,提高思维能力,同时也能在这其中感受、经历、创造出数学之美。让学生体味数学之美要贯穿于小学数学教学过程的始终,培养学生语言的表达和运用的能力也要贯穿于小学数学教学过程的始终。这就需要使学生通过“说题意”、“说发现”、“说过程”、“说算理”、“说方法”、“说规律”等一系列的“语言表述”,把认识数学的活动、思维的结果表达出来,从而达到既掌握数学基础知识,又能在语言中得到数学美的熏陶的目的。1、说题意,感受简约美。数学具有很强的学科特点,所以学生在用语言表达数学题意的时候,重点是说得完整、准确、简练、条理,而不同于语文教学中“说得形象、生动”。如两名学生看图各编一道题目:①妈妈买来9个苹果,小军吃了2个,还剩几个?②妈妈买来9个又红又大又香的苹果,贪吃的小军一连吃了2个,还剩几个?第②题虽比第①题讲得生动具体,但偏离了数学学科特点,数学不是研究事物外部的特征和属性,而是研究数量之间的关系,因而语言表达的重点应在数量关系的分析上,而不必在文字描述上花大的“笔墨”,这样才能有利于学生体会数学中的简约之美。2、说发现,感受变换美。让学生观察主题图、演示、图形后,要求学生说一说看到了什么,发现了什么,提一提相关的数学问题,促使学生有话可说的同时感受数学命题中的变换美。如,教学《两位数加减两位数》,创设“小兔拔萝卜”的情境,灰兔拔了36个萝卜,白兔拔了28个萝卜。师:从图中比发现了什么?能把你的发现编成数学问题吗?生1:哪只兔子拔的萝卜多?哪只兔子拔的萝卜少?生2:两只兔子一共拔了多少个萝卜?生3:灰兔比白兔多拔了多少个萝卜?生4:白兔比灰兔少拔了多少个萝卜?生5:灰兔给白兔几个萝卜两人就同样多?„„这样,让学生在情境中去发现,去寻找数学问题,成为一个数学问题的发现者。一方面可以激发学生的学习兴趣,另一方面可以让学生从不同的数学发现中感受到变换美,从而有效促进学生积极主动地参与到学习活动中去。3、说过程,感受形式美。在数学概念的教学中,如果只强调学生死记硬背结论,而忽视知识发生过程的教学,那么学生不仅对概念的理解会不深不透,而且更不能在其中体会到数学概念推理过程中的形式美。学生形成概念的过程,一般按“实践操作——形成表象——语言内化——抽象概括”的思维程序进行,如,教学《能被3整除的数的特征》时,采用四个步骤。第一步,通过操作具体感知。首先,让学生准备一张数位顺序表和一盒小棒,并在个位、十位、百位上依次摆小棒,然后再扩展到千位、万位„„,在学生摆小棒时,要求思考三个问题:①摆出了一个什么数?②用了几根小棒?③摆的数能被3整除吗?第二步,借助表象进行思考。生1:我摆的是501,用了6根小棒,501能被3整除。生2:我摆的是324,用了9根小棒,324能被3整除。生3:我摆的是102,用了3根小棒,102能被3整除。生4:我摆的是314,用了8根小棒,314不能被3整除。„„第三步,语言内化。引导学生分析思考:摆的数有的能被3整除,这个数与小棒的根数有什么关系?让学生各抒己见。第四步,抽象概括。学生通过讨论,总结出:一个数各个数位上的数的和是3、6、9„„的数能被3整除,各个数位上的数的和是1、2、4、5、7、8„„的数不能被3整除,并由此概括出:一个数各个数位上的数的和能被3整除,这个数就能被3整除。这样,通过直观操作与语言表达协同活动、相互支持和调节,学生就能够比较准确地抽象和概括出能被3整除的数的特征,并在说过程之中感受到数学概念的形式美。4、说算理,感受辩证美。思维是有逻辑的,它是一种确定的、前后一贯的、有条有理的、有根有据的。因此在教学中,我们要根据一定的逻辑顺序,教给学生辩证的思维方法,使学生思维的同时感觉到数学美。如计算教学中不仅要掌握计算法则,更重要的是要理解计算的道理。在教学完减法算式中各部分之间的关系后,出示了一道求未知数的题目:Χ―34=62。这时老师引导学生说出:Χ在这道减法算式中是什么数?怎样求出Χ是多少?是根据减法算式中的什么关系来求的?学生可以根据已学的知识,求出Χ的值,并说出求Χ的依据和方法。最后归纳出应用减法算式中各部分之间的关系,可以求出减法算式中的未知数,从而真正掌握了求未知数的方法和算理,也较好的锻炼了学生的语言表达能力。再如教学笔算进位加:34+28,就是4和8、3和2对齐,从个位4和8相加,4加8等于12,满十向十位进1。由于有了这样说的基础,在以后教学分数、小数四则混合运算或有括号的算式都可进行。通过以上“说”的训练,使学生说算理时有根有据,语言表达越来越流畅,思维越来越开阔,认识算理中的辩证美也越来越深刻。5、说方法,感受应用美。辨证唯物主义认为,客观事物总是互相影响、互相作用、普遍联系的。“解决实际问题”中的数量关系也是如此,它的条件与条件、条件与问题之间,总是直接地或间接地、明显地或隐蔽地相互联系着,这也是数学美的所在之处。因此,分析“解决实际问题”的过程中,要引导学生在通过寻找、捕捉、挖掘和组合的基础上,说出条件之间、条件与问题之间的种种联系,以帮助学生进一步强化数量关系。“解决实际问题”的教学重点也落在了训练如何有条理地说“方法”上来。如教学两步计算应用题:手工小组做了56朵红花,做的紫花比红花多18朵。一共做了多少朵花?教师可以让学生讲述分析问题以及解决问题的方法:要求一共做了多少朵花,必须先求出紫花有多少朵,即56+18=74(朵);再求出红花和紫花一共有多少朵,即56+74=130(朵)。另外,在应用所学会的数学方法解决问题时,让学生按照“已知_和_,可以求出_;要求_必须先求出_”的句式去说,可以帮助学生明确思维顺序,又使学生在解题方法的叙述中感受到数学的应用之美。6、说规律,感受典型美。在学习一些规律、性质、结论时,也要注意培养学生观察、分析、推理的能力,以及有序地表述和感受数学规律中典型美的能力。如在进行“因数和积的关系”内容教学时,学生可以通过观察分析表述:一个因数(25)不变,另一个因数分别扩大5倍、10倍、100倍、500倍,积也随着扩大5倍、10倍、100倍、500倍;又一个因数(25)不变,另一个因数分别缩小5倍、10倍、10

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论