




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届重庆市巫溪县八年级数学第二学期期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.用配方法解一元二次方程,此方程可化为的正确形式是()A. B. C. D.2.若化简的结果为,则的取值范围是()A.一切实数 B. C. D.3.如图,在正方形ABCD中,E是对角线BD上一点,且满足=AD,连接CE并延长交AD于点F,连接AE,过B点作于点G,延长BG交AD于点H.在下列结论中:①AH=DF;②∠AEF=45°;③.其中不正确的结论有()A.1个 B.2个 C.3个 D.0个4.一个多边形的每个内角均为120°,则这个多边形是()A.四边形 B.五边形 C.六边形 D.七边形5.如图,□ABCD中,AB=3,BC=5,AE平分∠BAD交BC于点E,则CE的长为()A.1 B.2 C.3 D.46.某小组5名同学在一周内参加家务劳动的时间如下表,关于“劳动时间”的这组数据,以下说法正确的是().劳动时间(小时)33.244.5人数1121A.中位数是4,平均数是3.74;B.中位数是4,平均数是3.75;C.众数是4,平均数是3.75;D.众数是2,平均数是3.8.7.已知,是一次函数的图象上的两个点,则,的大小关系是A. B. C. D.不能确定8.如图,已知菱形ABCD的周长是24米,∠BAC=30°,则对角线BD的长等于()A.6米 B.3米 C.6米 D.3米9.下列由左到右的变形中,属于因式分解的是()A. B.C. D.10.计算的结果等于()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知二次函数y=ax2+bx+c的图象经过点A(3,0),对称轴为直线x=1,则点B的坐标是_____.12.某中学组织八年级学生进行“绿色出行,低碳生活”知识竞赛,为了了解本次竞赛的成绩,把学生成绩分成五个等级,并绘制如图所示的扇形统计图(不完整)统计成绩,则等级所在扇形的圆心角是_______º.13.反比例函数y=图象上有两个点(x1,y1),(x2,y2),其中0<x1<x2,则y1,y2的大小关系是_____(用“<“连接).14.因式分解:______.15.因式分解:________.16.将点向右平移4个单位,再向下平移3个单位,则平移后点的坐标是__________.17.如图,点E、F分别在矩形ABCD的边BC和CD上,如果△ABE、△ECF、△FDA的面积分别刚好为6、2、5,那么矩形ABCD的面积为_____.18.如图,在矩形ABCD中,E是AB边上的中点,将△BCE沿CE翻折得到△FCE,连接AF.若∠EAF=75°,那么∠BCF的度数为__________.三、解答题(共66分)19.(10分)小芳从家骑自行车去学校,所需时间()与骑车速度()之间的反比例函数关系如图.(1)小芳家与学校之间的距离是多少?(2)写出与的函数表达式;(3)若小芳点分从家出发,预计到校时间不超过点分,请你用函数的性质说明小芳的骑车速度至少为多少?20.(6分)如图所示,正方形ABCD中,点E、F、G分别是边AD、AB、BC的中点,连接EP、FG.(1)如图1,直接写出EF与FG的关系____________;(2)如图2,若点P为BC延长线上一动点,连接FP,将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,连接EH.①求证:△FFE≌△PFG;②直接写出EF、EH、BP三者之间的关系;(3)如图3,若点P为CB延长线上的一动点,连接FP,按照(2)中的做法,在图(3)中补全图形,并直接写出EF、EH、BP三者之间的关系.21.(6分)某校要设计一座高的雕像(如图),使雕像的点(肚脐)为线段(全身)的黄金分割点,上部(肚脐以上)与下部(肚脐以下)的高度比为黄金比.则雕像下部设计的高度应该为______(结果精确到)米.(,结果精确到).22.(8分)在正方形中,点是边的中点,点是对角线上的动点,连接,过点作交正方形的边于点;(1)当点在边上时,①判断与的数量关系;②当时,判断点的位置;(2)若正方形的边长为2,请直接写出点在边上时,的取值范围.23.(8分)如图所示,方格纸中的每个小方格都是边长为个单位长度的正方形,在建立平面直角坐标系后,的顶点均在格点上.①以原点为对称中心,画出与关于原点对称的.②将绕点沿逆时针方向旋转得到,画出,并求出的长.24.(8分)如图,在正方形内任取一点,连接,在⊿外分别以为边作正方形和.⑴.按题意,在图中补全符合条件的图形;⑵.连接,求证:⊿≌⊿;⑶.在补全的图形中,求证:∥.25.(10分)如图,点D,C在BF上,AC∥DE,∠A=∠E,BD=CF.(1)求证:AB=EF;(2)连接AF,BE,猜想四边形ABEF的形状,并说明理由.26.(10分)已知:如图所示,菱形中,于点,且为的中点,已知,求菱形的周长和面积.
参考答案一、选择题(每小题3分,共30分)1、D【解题分析】
方程常数项移到右边,两边加上9变形即可得到结果.【题目详解】解:方程移项得:x2-6x=-1,
配方得:x2-6x+9=8,即(x-3)2=8,
故选D.【题目点拨】本题考查了解一元二次方程-配方法,熟练掌握完全平方公式是解题的关键.2、B【解题分析】
根据完全平方公式先把多项式化简为|1−x|−|x−4|,然后根据x的取值范围分别讨论,求出符合题意的x的值即可.【题目详解】原式可化简为,当,时,可得无解,不符合题意;当,时,可得时,原式;当,时,可得时,原式;当,时,可得时,原式.据以上分析可得当时,多项式等于.故选B.【题目点拨】本题主要考查绝对值及二次根式的化简,要注意正负号的变化,分类讨论3、A【解题分析】
先判断出∠DAE=∠ABH,再判断△ADE≌△CDE得出∠DAE=∠DCE=22.5°,∠ABH=∠DCF,再判断出Rt△ABH≌Rt△DCF从而得到①正确,根据三角形的外角求出∠AEF=45°,得出②正确;连接HE,判断出S△EFH≠S△EFD得出③错误.【题目详解】∵BD是正方形ABCD的对角线,∴∠ABE=∠ADE=∠CDE=45°,AB=BC,∵BE=BC,∴AB=BE,∵BG⊥AE,∴BH是线段AE的垂直平分线,∠ABH=∠DBH=22.5°,在Rt△ABH中,∠AHB=90°-∠ABH=67.5°,∵∠AGH=90°,∴∠DAE=∠ABH=22.5°,在△ADE和△CDE中,∴△ADE≌△CDE,∴∠DAE=∠DCE=22.5°,∴∠ABH=∠DCF,在Rt△ABH和Rt△DCF中,∴Rt△ABH≌Rt△DCF,∴AH=DF,∠CFD=∠AHB=67.5°,∵∠CFD=∠EAF+∠AEF,∴67.5°=22.5°+∠AEF,∴∠AEF=45°,故①②正确;如图,连接HE,∵BH是AE垂直平分线,∴AG=EG,∴S△AGH=S△HEG,∵AH=HE,∴∠AHG=∠EHG=67.5°,∴∠DHE=45°,∵∠ADE=45°,∴∠DEH=90°,∠DHE=∠HDE=45°,∴EH=ED,∴△DEH是等腰直角三角形,∵EF不垂直DH,∴FH≠FD,∴S△EFH≠S△EFD,∴S四边形EFHG=S△HEG+S△EFH=S△AHG+S△EFH≠S△DEF+S△AGH,故③错误,∴正确的是①②,故选A.【题目点拨】此题是四边形综合题,主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和和三角形外角的性质,解本题的关键是判断出△ADE≌△CDE,难点是作出辅助线.4、C【解题分析】由题意得,180°(n-2)=120°,解得n=6.故选C.5、B【解题分析】
利用平行四边形性质得∠DAE=∠BEA,再利用角平分线性质证明△BAE是等腰三角形,得到BE=AB即可解题.【题目详解】∵四边形ABCD是平行四边形,∴AD=BC=5,AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BEA=∠BAE,∴BE=AB=3,∴CE=BC-BE=5-3=2,故选B.【题目点拨】本题考查了平行四边形的性质,等腰三角形的判定,属于简单题,熟悉平行线加角平分线得到等腰三角形这一常用解题模型是解题关键.6、A【解题分析】
平均数是指在一组数据中所有数据之和再除以数据的个数,结合图表中的数据即可求出这组数据的平均数了;观察图表可知,只有劳动时间是4小时的人数是2,其他都是1人,据此即可得到众数,总共有5名同学,则排序后,第3名同学所对应的劳动时间即为中位数,【题目详解】观察表格可得,这组数据的中位数和众数都是4,平均数=(3+3.2+4×2+4.5)÷5=3.74.故选A.【题目点拨】此题考查加权平均数,中位数,解题关键在于看懂图中数据7、C【解题分析】
根据,是一次函数的图象上的两个点,由,结合一次函数在定义域内是单调递减函数,判断出,的大小关系即可.【题目详解】,是一次函数的图象上的两个点,且,
.
故选:C.
【题目点拨】本题主要考查了一次函数图象上点的坐标特征,解题的关键是熟练掌握一次函数的性质.8、C【解题分析】
由菱形ABCD的周长是24米,∠BAC=30°,易求得AB=6米,△ABD是等边三角形,继而求得答案.【题目详解】解:∵菱形ABCD的周长是24米,∠BAC=30°,∴AB=AD=24÷4=6(米),∠DAB=2∠BAC=60°,∴△ABD是等边三角形,∴BD=AB=6米.故选C.【题目点拨】此题考查了菱形的性质以及等边三角形的判定与性质.注意证得△ABD是等边三角形是解此题的关键.9、D【解题分析】
根据因式分解的定义,逐个判断即可.【题目详解】解:A、不属于因式分解,故本选项不符合题意;B、ax2+axy+ax=ax(x+y+1),因式分解错误,故本选项不符合题意;C、m2-2mn+n2=(m-n)2,因式分解错误,故本选项不符合题意;D、属于因式分解,故本选项符合题意;故选:D.【题目点拨】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、D【解题分析】
利用乘法法则计算即可求出值【题目详解】解:原式=-54,
故选D.【题目点拨】此题考查了有理数的乘法,熟练掌握乘法法则是解本题的关键.二、填空题(每小题3分,共24分)11、(﹣1,0).【解题分析】
根据点B与点A关于直线x=1对称确定点B的坐标即可.【题目详解】∵二次函数y=ax2+bx+c的图象与x轴交于A,B两点,∴点A与点B关于直线x=1对称,而对称轴是直线x=1,点A的坐标为(3,0),∴点B的坐标是(﹣1,0).故答案为(﹣1,0).【题目点拨】本题考查了二次函数的对称性,熟知二次函数的图象关于对称轴对称是解决问题的关键.12、72°【解题分析】
根据扇形统计图计算出C等级所在的扇形的圆心角,即可解答【题目详解】C等级所在的扇形的圆心角=(1−25%−35%−8%−12%)⋅360°=72°,故答案为:72°【题目点拨】此题考查扇形统计图,难度不大13、.【解题分析】
根据反比例函数的k确定图象在哪两个象限,再根据(x1,y1),(x2,y2),其中,确定这两个点均在第一象限,根据在第一象限内y随x的增大而减小的性质做出判断.【题目详解】解:反比例函数y=图象在一、三象限,(x1,y1),(x2,y2)在反比例函数y=图象上,且,因此(x1,y1),(x2,y2)在第一象限,∵反比例函数y=在第一象限y随x的增大而减小,∴,故答案为:.【题目点拨】本题考查了反比例函数的增减性,熟悉反比例函数的图象与性质是解题的关键.14、【解题分析】
首先把公因式3提出来,然后按照完全平方公式因式分解即可.【题目详解】解:==故答案为:.【题目点拨】此题考查利用提取公因式法和公式法因式分解,注意找出整式里面含有的公因式,然后再选用公式法.15、【解题分析】
首先提出公因式,然后进一步利用完全平方公式进行因式分解即可.【题目详解】解:原式==.故答案为:.【题目点拨】本题主要考查了因式分解,熟练掌握相关方法及公式是解题关键.16、(3,-1)【解题分析】
直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【题目详解】将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,
则平移后点的坐标是(-1+4,2-3),即(3,-1),
故答案为:(3,-1).【题目点拨】此题考查坐标与图形变化-平移,解题关键在于掌握左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.17、20【解题分析】
设AB=CD=a,AD=BC=b,根据三角形的面积依次求出BE,EC,CF,DF的长度,再根据△ADF面积为5,可列方程,可求ab的值,即可得矩形ABCD的面积.【题目详解】设AB=CD=a,AD=BC=b∵S△ABE=6∴AB×BE=6∴BE=∴EC=b﹣∵S△EFC=2∴EC×CF=2∴CF=∴DF=a﹣∵S△ADF=5∴AD×DF=5∴b(a﹣)=10∴(ab)2﹣26ab+120=0∴ab=20或ab=6(不合题意舍去)∴矩形ABCD的面积为20故答案为20【题目点拨】此题考查了面积与等积变换的知识以及直角三角形与矩形的性质.此题难度适中,注意掌握方程思想与数形结合思想的应用.18、30°【解题分析】
解:∵四边形ABCD是矩形,
∴∠B=90°,
∵E为边AB的中点,
∴AE=BE,
由折叠的性质可得:∠EFC=∠B=90°,∠FEC=∠CEB,∠FCE=∠BCE,FE=BE,
∴AE=FE,
∴∠EFA=∠EAF=75°,
∴∠BEF=∠EAF+∠EFA=150°,
∴∠CEB=∠FEC=75°,
∴∠FCE=∠BCE=90°-75°=15°,
∴∠BCF=30°,
故答案为30°.【题目点拨】本题考查了翻折变换的性质、矩形的性质、等腰三角形的性质、直角三角形的性质以及三角形的外角性质;熟练掌握翻折变换和矩形的性质是解决问题的关键.三、解答题(共66分)19、(1)1400;(2);(3)小芳的骑车速度至少为.【解题分析】
(1)直接利用反比例函数图象上点的坐标得出小芳家与学校之间的距离;(2)利用待定系数法求出反比例函数解析式;(3)利用y=8进而得出骑车的速度.【题目详解】(1)小芳家与学校之间的距离是:();(2)设,当时,,解得:,故与的函数表达式为:;(3)当时,,,在第一象限内随的增大而减小,小芳的骑车速度至少为.【题目点拨】此题主要考查了反比例函数的应用,正确得出函数关系式是解题关键.20、(1)EF⊥FG,EF=FG;(2)详见解析;(3)补全图形如图3所示,EF+BP=EH.【解题分析】
(1)根据线段中点的定义求出AE=AF=BF=BG,得出∠AFE=∠AEF=∠BFG=∠BGF=45°,求出∠EFG的度数,由“SAS”证得△AEF和△BFG全等,得出EF=FG,即可得出结果;(2)①由旋转的性质得出∠PFH=90°,FP=FH,证出∠GFP=∠EFH,由SAS即可得出△HFE≌△PFG;②由全等三角形的性质得出EH=PG,由等腰直角三角形的性质得出EF=AF=BG,因此BG=EF,再由BG+GP=BP,即可得出结论;(3)根据题意作出图形,然后同(2)的思路求解即可.【题目详解】解:(1)如图1所示:∵点E、F、G分别是边AD、AB、BC的中点,∴AE=AF=BF=BG,∵四边形ABCD是正方形,∴∠AFE=∠AEF=∠BFG=∠BGF=45°,∴∠EFG=180°-∠AFE-∠BFG=180°-45°-45°=90°,∴EF⊥FG,在△AEF和△BFG中,,∴△AEF≌△BFG(SAS),∴EF=FG,故答案为EF⊥FG,EF=FG;(2)如图2所示:①证明:由(1)得:∠EFG=90°,EF=FG,∵将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,∴∠PFH=90°,FP=FH,∵∠GFP+∠PFE=90°,∠PFE+∠EFH=90°,∴∠GFP=∠EFH,在△HFE和△PFG中,,∴△HFE≌△PFG(SAS);②解:由①得:△HFE≌△PFG,∴EH=PG,∵AE=AF=BF=BG,∠A=∠B=90°,∴EF=AF=BG,∴BG=EF,∵BG+GP=BP,∴EF+EH=BP;(3)解:补全图形如图3所示,EF+BP=EH.理由如下:由(1)得:∠EFG=90°,EF=FG,∵将线段FP以点F为旋转中心,逆时针旋转90°,得到线段FH,∴∠PFH=90°,FP=FH,∵∠EFG+∠GFH=∠EFH,∠PFH+∠GFH=GFP,∴∠GFP=∠EFH,在△HFE和△PFG中,,∴△HFE≌△PFG(SAS),∴EH=PG,∵AE=AF=BF=BG,∠A=∠ABC=90°,∴EF=AF=BG,∴BG=EF,∵BG+BP=PG,∴EF+BP=EH.【题目点拨】本题是四边形综合题目,考查了全等三角形的判定与性质,正方形的性质,等腰直角三角形的判定与性质,勾股定理,旋转的性质等知识;本题综合性强,作辅助线构造出全等三角形是解题的关键.21、【解题分析】
设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.根据雕像上部与下部的高度之比等于下部与全部的高度比,列出方程求解即可.【题目详解】解:设雕像下部的设计高度为xm,那么雕像上部的高度为(2-x)m.
依题意,得解得(不合题意,舍去).经检验,是原方程的根.雕像下部设计的高度应该为:1.236m故答案为:1.236m【题目点拨】本题考查了黄金分割的应用,利用黄金分割中成比例的对应线段是解决问题的关键.22、(1)①,理由详见解析;②点位于正方形两条对角线的交点处(或中点出),理由详见解析;(2)【解题分析】
(1)①过点作于点,于点,通过证可得ME=MF;②点位于正方形两条对角线的交点处时,,可得;(2)当点F分别在BC的中点处和端点处时,可得M的位置,进而得出AM的取值范围。【题目详解】解:(1)。理由是:过点作于点,于点在正方形中,矩形为正方形又②点位于正方形两条对角线的交点处(或中点处)如图,是的中位线,又,此时,是中点,且,,(2)当点F在BC中点时,M在AC,BD交点处时,此时AM最小,AM=AC=;当点F与点C重合时,M在AC,BD交点到点C的中点处,此时AM最大,AM=。故答案为:【题目点拨】本题是运动型几何综合题,考查了全等三角形、正方形、命题证明等知识点.解题要点是:(1)明确动点的运动过程;(2)明确运动过程中,各组成线段、三角形之间的关系;(3)添加恰当的辅助线是解题的关键。23、①见解析;②【解题分析】试题分析:(1)根据对称点平分对应点连线可找到各点的对应点,从而顺次连接即可得出△A1B1C1;
(2)根据图形旋转的性质画出△A2B2C2,并求得的长.试题解析:①②∴即为所求设点为点,∵,,∴,.∵,∴.∵旋转,∴,.∵,,∴,.∵,∴.24、(1)补全图形见解析;(2)证明见解析;(3)证明见
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 青岛版小学数学三年级上册跨学科教学计划
- 初中英语教师心理健康发展计划
- 艾滋病及其护理
- 十年(2014-2023)高考化学真题分项汇编(全国)专题07 阿伏伽德罗常数A(含答案或解析)
- 倾城护理项目介绍
- 建筑工地扬尘控制与环境保护措施
- 儿科病房温暖护理方案
- 职业美术师的技能提升计划
- 科技公司2025年市场销售总结及计划
- 高级作业员复习试题附答案
- 2023年云南省普通高中学业水平考试历史试卷附答案
- 高速公路横断面设计
- 教资面试 阅读课 全日语逐字稿 讲义
- 导截流验收报告汇编
- 大班科学《神奇的中草药》课件
- 信用修复申请书
- 全过程造价控制流程全图
- 温州7.23动车事故调查报告介绍课件
- RAL 劳尔色卡电子版
- 造价咨询质量控制保证措施及服务质量
- 跳棋教学(课堂PPT)
评论
0/150
提交评论