




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省鄂州市2024届数学八下期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题(每题4分,共48分)1.若关于x的分式方程无解,则a的值为()A. B.2 C.或2 D.或﹣22.如图,在△ABC中,∠ACB=90°,BE平分∠ABC,ED⊥AB于D.如果∠A=30°,EC=2,则下列结论不正确的是()A.ED=2 B.AE=4C.BC= D.AB=83.如图,矩形ABCD中,AB=8,BC=4,P,Q分别是直线AB,AD上的两个动点,点在边上,,将沿翻折得到,连接,,则的最小值为()A. B. C. D.4.若a>b,则下列结论不一定成立的是()A.a-1>b-1 B. C. D.-2a<-2b5.一次函数y=(k﹣3)x+2,若y随x的增大而增大,则k的值可以是()A.1 B.2 C.3 D.46.如图是某校七、八两个年级借阅图书的人数的扇形统计图,下列说法错误的是()A.七年级借阅文学类图书的人数最多B.八年级借阅教辅类图书的人数最少C.两个年级借阅文学类图书的人数最多D.七年级借阅教辅学类图书的人数与八年级借阅科普类图书的人数相同7.某学校在开展“节约每一滴水”的活动中,从九年级的500名同学中任选出10名同学汇报了各自家庭一个月的节水情况,将有关数据整理如下表所示:节水量(单位:t)0.511.52同学数(人)2341请你估计这500名同学的家庭一个月节约的水总量大约是()A.400t B.500t C.700t D.600t8.若直角三角形中,斜边的长为13,一条直角边长为5,则这个三角形的面积是()A.60 B.30 C.20 D.329.函数y=﹣x的图象与函数y=x+1的图象的交点在()A.第一象限 B.第二象限 C.第三象限 D.第四象限10.若直线y=x+1与y=-2x+a的交点在第一象限,则a的取值可以是A.-1 B.0 C.1 D.211.如果与最简二次根式是同类二次根式,则的值是()A. B. C. D.12.用配方法解关于的一元二次方程,配方后的方程可以是()A. B.C. D.二、填空题(每题4分,共24分)13.有一组数据:3,,4,6,7,它们的平均数是5,那么这组数据的方差是______.14.计算:____.15.抽取某校学生一个容量为150的样本,测得学生身高后,得到身高频数分布直方图如图,已知该校有学生1500人,则可以估计出该校身高位于160cm和165cm之间的学生大约有_______人.16.某企业两年前创办时的资金为1000万元,现在已有资金1210万元,设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:______.17.为响应“低碳生活”的号召,李明决定每天骑自行车上学,有一天李明骑了1000米后,自行车发生了故障,修车耽误了5分钟,车修好后李明继续骑行,用了8分钟骑行了剩余的800米,到达学校(假设在骑车过程中匀速行驶).若设他从家开始去学校的时间为t(分钟),离家的路程为y(千米),则y与t(15<t≤23)的函数关系为________.18.在中,对角线,相交于点,若,,,则的周长为_________.三、解答题(共78分)19.(8分)已知关于的一元二次方程.(1)求证:无论取何实数,该方程总有两个不相等的实数根;(2)若方程的一根为3,求另一个根.20.(8分)当为何值时,分式的值比分式的值大2?21.(8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?22.(10分)如图,在三角形纸片中,的平分线交于点D,将沿折叠,使点C落在点A处.(1)求证:.(2)若,求的度数.23.(10分)如图,在中,AD是高,E、F分别是AB、AC的中点.(1)求证:EF垂直平分AD;(2)若四边形AEDF的周长为24,,求AB的长.24.(10分)为了倡导“节约用水,从我做起”,南沙区政府决定对区直属机关300户家庭的用水情况作一次调查,区政府调查小组随机抽查了其中50户家庭一年的月平均用水量(单位:吨),调查中发现每户用水量均在10﹣14吨/月范围,并将调查结果制成了如图所示的条形统计图.(1)请将条形统计图补充完整;(2)这50户家庭月用水量的平均数是,众数是,中位数是;(3)根据样本数据,估计南沙区直属机关300户家庭中月平均用水量不超过12吨的约有多少户?25.(12分)如图,在平面直角坐标系xOy中,直线的表达式为,点A,B的坐标分别为(1,0),(0,2),直线AB与直线相交于点P.(1)求直线AB的表达式;(2)求点P的坐标;(3)若直线上存在一点C,使得△APC的面积是△APO的面积的2倍,直接写出点C的坐标.26.在一条直线上依次有A、B、C三个海岛,某海巡船从A岛出发沿直线匀速经B岛驶向C岛,执行海巡任务,最终达到C岛.设该海巡船行驶x(h)后,与B港的距离为y(km),y与x的函数关系如图所示.(1)填空:A、C两港口间的距离为km,;(2)求y与x的函数关系式,并请解释图中点P的坐标所表示的实际意义;(3)在B岛有一不间断发射信号的信号发射台,发射的信号覆盖半径为15km,求该海巡船能接受到该信号的时间有多长?
参考答案一、选择题(每题4分,共48分)1、D【解题分析】
分式方程去分母转化为整式方程,由分式方程无解确定出a的值即可.【题目详解】解:去分母得:2x+2a+ax﹣2a=1,整理得:(a+2)x=1,由分式方程无解,得到a+2=0或x==2,解得:a=﹣2或a=﹣,故选:D.【题目点拨】此题考查了分式方程的解,始终注意分母不为0这个条件.2、D【解题分析】
根据角平分线的性质以及锐角三角函数的定义和性质计算出各线段长度逐项进行判断即可.【题目详解】∵∠ACB=90°,∠A=30°∴∵BE平分∠ABC,ED⊥AB,EC=2∴,,故选项A正确∴,故选项B正确∴,故选项C正确∴,故选项D错误故答案为:D.【题目点拨】本题考查了三角形的线段长问题,掌握角平分线的性质以及锐角三角函数的定义是解题的关键.3、B【解题分析】
作点C关于AB的对称点H,连接PH,EH,由已知求出CE=6,CH=8,由勾股定理得出EH==10,由SAS证得△PBC≌△PBH,得出CP=PH,PF+PC=PF+PH,当E、F、P、H四点共线时,PF+PH值最小,即可得出结果.【题目详解】解:作点C关于AB的对称点H,连接PH,EH,如图所示:∵矩形ABCD中,AB=8,BC=4,DE=2,∴CE=CD−DE=AB−DE=6,CH=2BC=8,∴EH==10,在△PBC和△PBH中,,∴△PBC≌△PBH(SAS),∴CP=PH,∴PF+PC=PF+PH,∵EF=DE=2是定值,∴当E、F、P、H四点共线时,PF+PH值最小,最小值=10−2=8,∴PF+PD的最小值为8,故选:B.【题目点拨】本题考查翻折变换、矩形的性质、全等三角形的判定与性质、勾股定理等知识,解题的关键是学会利用轴对称,根据两点之间线段最短解决最短问题.4、C【解题分析】
不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,根据不等式的性质判断即可.【题目详解】A.不等式a>b两边同时减1,a-1>b-1一定成立;B.不等式a>b两边同时除以3,一定成立;C.不等式a>b两边同时平方,不一定不成立,可举反例:,但是;D.不等式a>b两边同时乘以-2,-2a<-2b一定成立.故选C.【题目点拨】本题考查不等式的性质,熟记不等式两边同时加减一个数,或同时乘除一个不为0的数,不等号不改变方向,不等式两边同时乘除一个不为0的数,不等号改变方向,是解题的关键.5、D【解题分析】试题分析:根据一次函数的性质,当y随x的增大而增大时,求得k的范围,在选项中找到范围内的值即可.解:根据一次函数的性质,对于y=(k﹣3)x+2,当(k﹣3)>0时,即k>3时,y随x的增大而增大,分析选项可得D选项正确.答案为D.6、D【解题分析】
根据扇形统计图的特点即可判断.【题目详解】解:A.七年级借阅文学类图书的人数最多,正确;B.八年级借阅教辅类图书的人数最少,正确;C.两个年级借阅文学类图书的人数最多,正确;由题意可得本题的总量无法确定,故不能确定哪个年级借阅图书的具体人数.故选:D.【题目点拨】此题主要考查扇形统计图的信息,解题的关键是熟知扇形统计图的特点.7、D【解题分析】
先计算这10名同学各自家庭一个月的节水量的平均数,即样本平均数,然后乘以总数500即可解答.【题目详解】解:0.5×2+1×3+1.5×4+2×110=1.2(t),
500×1.2=600(t),
答:估计这500名同学的家庭一个月节约的水总量大约是600t;
【题目点拨】本题考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.008、B【解题分析】
解:根据直角三角形的勾股定理可得:另一条直角边=,则S=12×5÷2=30故选:B.9、B【解题分析】试题分析:先把与组成方程组求得交点坐标,即可作出判断.由解得所以函数的图象与函数的图象的交点在第二象限故选B.考点:点的坐标点评:平面直角坐标系内各个象限内的点的坐标的符号特征:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).10、D【解题分析】
联立两直线解析式,解关于x、y的二元一次方程组,然后根据交点在第一象限,横坐标是正数,纵坐标是正数,列出不等式组求解即可.【题目详解】解:联立,解得:,∵交点在第一象限,∴,解得:a>1.故选D.【题目点拨】本题考查了两直线相交的问题,第一象限内点的横坐标是正数,纵坐标是正数,以及一元一次不等式组的解法,把a看作常数表示出x、y是解题的关键.11、B【解题分析】
根据同类二次根式的定义得出5+a=3,求出即可.【题目详解】∵与最简二次根式是同类二次根式,,∴5+a=3,解得:a=﹣1.故选B.【题目点拨】本题考查了同类二次根式和最简二次根式,能根据同类二次根式的定义得出5+a=3是解答此题的关键.12、A【解题分析】
在本题中,把常数项−3移项后,应该在左右两边同时加上一次项系数−2的一半的平方.【题目详解】解:把方程x2−2x−3=0的常数项移到等号的右边,得到x2−2x=3,方程两边同时加上一次项系数一半的平方,得到x2−2x+1=3+1,配方得(x−1)2=1.故选:A.【题目点拨】本题考查了配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.二、填空题(每题4分,共24分)13、2【解题分析】试题分析:已知3,a,4,6,1.它们的平均数是5,根据平均数的公式可得a=5×5﹣3﹣4﹣6﹣1=5,所以这组数据的方差是s2=[(3﹣5)2+(5﹣5)2+(4﹣5)2+(6﹣5)2+(1﹣5)2]=2.考点:平均数;方差.14、1【解题分析】
根据二次根式的乘法运算法则进行计算即可.【题目详解】解:.故答案为:1.【题目点拨】本题考查了二次根式的乘法运算,掌握基本运算法则是解题的关键.15、1【解题分析】
根据频率直方图的意义,由用样本估计总体的方法可得样本中160~165的人数,进而可得其频率;计算可得1500名学生中身高位于160cm至165cm之间的人数【题目详解】解:由题意可知:150名样本中160~165的人数为30人,则其频率为,则1500名学生中身高位于160cm至165cm之间大约有1500×=1人.故答案为1.【题目点拨】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;同时本题很好的考查了用样本来估计总体的数学思想.16、.【解题分析】
根据关系式:现在已有资金1000万元×(1+年平均增长率)2=现在已有资金1万元,把相关数值代入即可求解.【题目详解】设该企业两年内资金的年平均增长率是x,则根据题意可列出方程:1000(1+x)2=1.故答案为:1000(1+x)2=1.【题目点拨】此题主要考查了由实际问题抽象出一元二次方程,关键是掌握增长率问题的计算公式:变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.17、y=100t-500(15<t≤23)【解题分析】分析:由题意可知,李明骑车的速度为100米/分钟,由此可知他从家到学校共用去了23分钟,其中自行车出故障前行驶了10分钟,自行车修好后行驶了8分钟,由此可知当时,y与t的函数关系为:.详解:∵车修好后,李明用8分钟骑行了800米,且骑车过程是匀速行驶的,∴李明整个上学过程中的骑车速度为:100米/分钟,∴在自行车出故障前共用时:1000÷100=10(分钟),∵修车用了5分钟,∴当时,是指小明车修好后出发前往学校所用的时间,∴由题意可得:(),化简得:().故答案为:().点睛:“由题意得到李明骑车的速度为100米/分钟,求时,y与t间的函数关系是求自行车修好后到家的距离与行驶的时间间的函数关系”是解答本题的关键.18、21【解题分析】
由在平行四边形ABCD中,AC=14,BD=8,AB=10,利用平行四边形的性质,即可求得OA与OB的长,继而求得△OAB的周长.【题目详解】∵在平行四边形ABCD中,AC=14,BD=8,AB=10,∴OA=AC=7,OB=BD=4,∴△OAB的周长为:AB+OB+OA=10+7+4=21.故答案为:21.【题目点拨】本题考查平行四边形的性质,熟练掌握平行四边形的性质和计算法则是解题关键.三、解答题(共78分)19、(1)见解析;(2)-1.【解题分析】
(1)根据方程的系数结合根的判别式即可得出△=m2+12≥12,由此即可得出结论.
(2)将x=3代入原方程求出m值,再将m得值代入原方程利用十字相乘法即可求出方程的另一根,或者直接利用两根之积等于-3可得.【题目详解】解:(1)∵在方程x2-mx-3=0中,△=(-m)2-4×1×(-3)=m2+12≥12,
∴对于任意实数m,方程总有两个不相等的实数根.
(2)方法一:将x=3代入x2-mx-3=0中,得:9-3m-3=0,
解得:m=2,
当m=2时,原方程为x2-2x-3=(x+1)(x-3)=0,
解得:x1=-1,x2=3,
∴方程的另一根为-1.
方法二:设方程的另一个根为a,
则3a=-3,
解得:a=-1,
即方程的另一根为-1.【题目点拨】本题考查了根的判别式及根与系数的关系,掌握x1+x2=-,x1•x2=与判别式的值与方程的解得个数的关系是解题的关键.20、当时,分式的值比分式的值大2.【解题分析】
根据题意列出方程,求出方程的解即可得到x的值.【题目详解】解:根据题意得:方程两边同乘以约去分母,得:化简整理,得:解得经检验:是原方程的根,所以,原方程的根是:所以,当时,分式的值比分式的值大2.【题目点拨】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.21、(1)1200;(2)1.【解题分析】
(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=10等量关系列出方程.【题目详解】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=1,经检验:x=1是原方程的解.答:原计划每小时抢修道路1米.点评:本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.22、(1)证明见解析;(2)【解题分析】
(1)由角平分线的定义可得,由折叠图形的性质可得,DE垂直平分AC,可得,即可求证;(2)由(1)可得,在三角形ABC中,根据内角和等于180度即可求解.【题目详解】解:(1)平分,.∵将沿DE对折后,点C落在点A处,垂直平分,,.(2)由(1)可得,,∴.【题目点拨】本题考查折叠图形的性质、角平分线的定义、三角形内角和定理和垂直平分线的性质,解题的关键是灵活运用各种知识证明和求解,是个较简单的几何题.23、(1)证明过程见解析;(2)AB的长为15.【解题分析】
(1)根据线段两端点距离相等的点在线段的垂直平分线即可证明该结论;(2)根据,可得AF+DF=AC,DE+AE=AB,即可得出答案.【题目详解】(1)证明:∵△ADB和△ADC是直角三角形且E、F分别是AB、AC的中点∴,∴E在线段AD的垂直平分线上,F在线段AD的垂直平分线上∴EF垂直平分AD(2)∵,∴AF+DF=AC,DE+AE=AB又∵四边形AEDF的周长为24,∴AB=24-9=15故AB的长为15.【题目点拨】本题考查了直角三角形斜边上的中线等于斜边的一半的性质以及到线段两端点距离相等的点在线段的垂直平分线的性质,熟记性质是解决本题的关键.24、(1)补图见解析;(2)11.6,11,11;()210户.【解题分析】试题分析:(1)利用总户数减去其他的即可得出答案,再补全即可;(2)利用众数,中位数以及平均数的公式进行计算即可;(3)根据样本中不超过12吨的户数,再估计300户家庭中月平均用水量不超过12吨的户数即可.解:(1)根据条形图可得出:平均用水11吨的用户为:50﹣10﹣5﹣10﹣5=20(户),如图所示:(2)这50个样本数据的平均数是11.6,众数是11,中位数是11;故答案为;11.6,11,11;(3)样本中不超过12吨的有10+20+5=35(户),∴广州市直机关300户家庭中月平均用水量不超过12吨的约有:300×=210(户).点评:本题考查了读统计图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.也考查了众数、中位数的统计意义.找中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个.25、(1)y=-1x+1;(1)P的坐标为(1,-1);(3)(3,0),(1,-4).【解题分析】【分析】(1)用待定系数法求函数的解析式;(1)由两个解析式构成方程组,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 永州职业技术学院《物理学史》2023-2024学年第二学期期末试卷
- 石家庄工程职业学院《三维造型与建模》2023-2024学年第二学期期末试卷
- 华科大汽轮机调节系统课件04第四章 数字系统(下)
- 山东师范大学《医用物理学B》2023-2024学年第二学期期末试卷
- 湖南三一工业职业技术学院《音乐舞蹈基础》2023-2024学年第二学期期末试卷
- 西安医学高等专科学校《人力资源管理技能开发实训》2023-2024学年第二学期期末试卷
- 合肥经济学院《医学电生理》2023-2024学年第二学期期末试卷
- 徽商职业学院《中外营销传播史》2023-2024学年第二学期期末试卷
- 西安工业大学《云计算》2023-2024学年第二学期期末试卷
- 云南省昆明市重点中学2024-2025学年高二下学期6月月考语文测试题
- 2025年四川省高考物理试卷真题(含答案)
- 炸鸡店的产品创新与口味调研
- 2025年共享办公空间增值服务运营模式创新与产业链创新模式报告
- 电气控制柜面试题及答案
- 药房药品追溯管理制度
- 陕西省铜川市2025年八下英语期末监测试题含答案
- 缺血性卒中脑保护中国专家共识(2025)解读
- 2025年福建省厦门市中考物理模拟试卷
- 海洋垃圾资源化利用与环境影响评估-洞察阐释
- IEC60335-1中文版本大全
- 代谢相关脂肪性肝病防治指南2024年版解读
评论
0/150
提交评论